Tachyon (software)

Source: Wikipedia, the free encyclopedia.
Tachyon
Original author(s)John E. Stone
Written inC
TypeRay tracing/3D rendering software
LicenseBSD-3-Clause
Websitejedi.ks.uiuc.edu/~johns/tachyon/
Satellite tobacco mosaic virus molecular graphics produced in VMD and rendered using Tachyon. The scene is shown with a combination of direct lighting and ambient occlusion lighting to improve the visibility of pockets and cavities. The VMD axes are shown as an example of rendering of non-molecular geometry.
Tachyon rendering of a 1-billion atom aerosolized SARS-CoV-2 virion (COVID-19).
Tachyon rendering of a 1-billion atom aerosolized SARS-CoV-2 virion (COVID-19).
Intel iPSC/860 32-node parallel computer running a Tachyon performance test. August 22, 1995.

Tachyon is a parallel/multiprocessor ray tracing software. It is a parallel ray tracing library for use on distributed memory parallel computers, shared memory computers, and clusters of workstations. Tachyon implements rendering features such as ambient occlusion lighting, depth-of-field focal blur, shadows, reflections, and others. It was originally developed for the Intel iPSC/860 by John Stone for his M.S. thesis at University of Missouri-Rolla.[1] Tachyon subsequently became a more functional and complete ray tracing engine, and it is now incorporated into a number of other open source software packages such as VMD, and SageMath. Tachyon is released under a permissive license (included in the tarball).

Evolution and Features

Tachyon was originally developed for the Intel iPSC/860, a distributed memory parallel computer based on a hypercube interconnect topology based on the Intel i860, an early RISC CPU with VLIW architecture and . Tachyon was originally written using Intel's proprietary NX message passing interface for the iPSC series, but it was ported to the earliest versions of MPI shortly thereafter in 1995. Tachyon was adapted to run on the Intel Paragon platform using the Paragon XP/S 150 MP at Oak Ridge National Laboratory. The ORNL XP/S 150 MP was the first platform Tachyon supported that combined both large-scale distributed memory message passing among nodes, and shared memory multithreading within nodes. Adaptation of Tachyon to a variety of conventional Unix-based workstation platforms and early clusters followed, including porting to the IBM SP2. Tachyon was incorporated into the PARAFLOW CFD code to allow in-situ volume visualization of supersonic combustor flows performed on the Paragon XP/S at NASA Langley Research Center, providing a significant performance gain over conventional post-processing visualization approaches that had been used previously.[2] Beginning in 1999, support for Tachyon was incorporated into the molecular graphics program VMD, and this began an ongoing period co-development of Tachyon and VMD where many new Tachyon features were added specifically for molecular graphics. Tachyon was used to render the winning image illustration category for the NSF 2004 Visualization Challenge.[3] In 2007, Tachyon added support for ambient occlusion lighting, which was one of the features that made it increasingly popular for molecular visualization in conjunction with VMD. VMD and Tachyon were gradually adapted to support routine visualization and analysis tasks on clusters, and later for large petascale supercomputers. Tachyon was used to produce figures, movies, and the Nature cover image of the atomic structure of the HIV-1 capsid solved by Zhao et al. in 2013, on the Blue Waters petascale supercomputer at NCSA, U. Illinois.[4][5] Both CPU and GPU versions of Tachyon were used to render images of the SARS-CoV-2 virion, spike protein, and aerosolized virion in three separate ACM Gordon Bell COVID-19 research projects, including the winning project at Supercomputing 2020,[6] and two finalist projects at Supercomputing 2021.[citation needed]

Use in Parallel Computing Demonstrations, Training, and Benchmarking

Owing in part to its portability to a diverse range of platforms Tachyon has been used as a test case for a variety of parallel computing and compiler research articles.

In 1999, John Stone assisted Bill Magro with adaptation of Tachyon to support early versions of the OpenMP directive-based parallel computing standard, using Kuck and Associates' KCC compiler. Tachyon was shown as a demo performing interactive ray tracing on DEC Alpha workstations using KCC and OpenMP.

In 2000, Intel acquired Kuck and Associates Inc.,[7] and Tachyon continued to be used as an OpenMP demonstration. Intel later used Tachyon to develop a variety of programming examples for its Threading Building Blocks (TBB) parallel programming system, where an old version of the program continues to be incorporated as an example to the present day.[8][9]

In 2006, Tachyon was selected by the SPEC HPG for inclusion in the SPEC MPI 2007 benchmark suite.[10][11]

Beyond Tachyon's typical use as tool for rendering high quality images, likely due to its portability and inclusion in SPEC MPI 2007, it has also been used as a test case and point of comparison for a variety of research projects related to parallel rendering and visualization,[12][13][14][15][16][17][18][19][20] cloud computing,[21][22][23][24][25] and parallel computing,[26][27][28] compilers,[29][30][31][32] runtime systems,[33][34] and computer architecture,[35][36][37] performance analysis tools,[38][39][40] and energy efficiency of HPC systems.[41][42][43]

See also

External links

References

  1. ^ Stone, John E. (January 1998). "An Efficient Library for Parallel Ray Tracing and Animation". Masters Theses.
  2. S2CID 16846313
    .
  3. ^ Emad Tajkhorshid; Klaus Schulten. "Water Permeation Through Aquaporins". Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign.
  4. PMID 23719463
    .
  5. .
  6. PMC 8064023.{{cite journal}}: CS1 maint: date and year (link
    )
  7. ^ "Intel To Acquire Kuck & Associates. Acquisition Expands Intel's Capabilities in Software Development Tools for Multiprocessor Computing". Retrieved January 30, 2016.
  8. ^ "Intel® Threading Building Blocks (Intel® TBB)". Retrieved January 30, 2016.
  9. ^ "Parallel for -Tachyon". Intel Corporation. 2009-03-09. Retrieved January 30, 2016.
  10. ^ "122.tachyon SPEC MPI2007 Benchmark Description". Retrieved January 30, 2016.
  11. S2CID 5496204
    .
  12. .
  13. ^ Lawlor, Orion Sky. "IMPOSTORS FOR PARALLEL INTERACTIVE COMPUTER GRAPHICS" (PDF). M.S., University of Illinois at Urbana-Champaign, 2001. Retrieved January 30, 2016.
  14. ^ "Lawlor, Orion Sky, Matthew Page, and Jon Genetti. "MPIglut: powerwall programming made easier." (2008)" (PDF). Retrieved January 30, 2016.
  15. ].
  16. ^ "Lawlor, Orion Sky, and Joe Genetti. "Interactive volume rendering aurora on the GPU." (2011)" (PDF).
  17. S2CID 431332
    .
  18. .
  19. .
  20. ^ Sener, Melih; et al. "Visualization of Energy Conversion Processes in a Light Harvesting Organelle at Atomic Detail" (PDF). Retrieved January 30, 2016.
  21. S2CID 15380880
    .
  22. .
  23. CiteSeerX 10.1.1.456.6480. {{cite journal}}: Cite journal requires |journal= (help
    )
  24. ^ Tao, Jie; et al. (2012). "An Implementation Approach for Inter-Cloud Service Combination" (PDF). International Journal on Advances in Software. 5 (1&2): 65–75.
  25. .
  26. . Retrieved January 30, 2016.
  27. .
  28. .
  29. .
  30. ^ Guerin, Xavier (2010-05-12). Guerin, Xavier. An Efficient Embedded Software Development Approach for Multiprocessor System-on-Chips. Diss. Institut National Polytechnique de Grenoble-INPG, 2010 (phdthesis). Institut National Polytechnique de Grenoble - INPG. Retrieved January 30, 2016.
  31. .
  32. .
  33. .
  34. .
  35. .
  36. .
  37. ^ "Almaless, Ghassan, and Franck Wajsburt. "On the scalability of image and signal processing parallel applications on emerging cc-NUMA many-cores." Design and Architectures for Signal and Image Processing (DASIP), 2012 Conference on. IEEE, 2012" (PDF).
  38. S2CID 14284392
    .
  39. .
  40. .
  41. .
  42. .
  43. .