User:Annawesthaver4340/Apple scab

Source: Wikipedia, the free encyclopedia.
The main symptom of apple scab in infected trees is the development of brown lesions on the foliage and fruits.
Common names Also: sooty blotch
Causal agents Venturia inaequalis
Hosts Malus, Sorbus, Cotoneaster, Pyrus
EPPO Code VENTIN

Apple scab is a common disease of plants in the family Rosaceae that is caused by the ascomycete fungus Venturia inaequalis.[1] While this disease impacts several plant genera, including Sorbus, Cotoneaster, and Pyrus, it is most widely associated with the infection of Malus trees, which include both flowering crabapple and cultivated apple.[2][3] The first symptoms of this disease are found in the foliage, blossoms, and developing fruits of affected trees which, when infected, develop dark, irregularly-shaped lesions.[4][5][1] Although apple scab rarely kills its host, infection typically leads to fruit deformation, premature leaf and fruit drop, and enhances susceptibility of tree abiotic stress and secondary infection.[6][5] As a result of reduction in fruit quality and yield, apple scab may reduce in crop losses of up to 70%, posing a significant threat to the economies of apple-producing regions.[6][5] To reduce yield losses caused by apple scab, growers commonly use a combination of preventative controls, such as sanitation and resistance breeding, and targeted fungicide treatments, which are supported through the use of predictive modelling systems.[7]

History and Distribution

The earliest official reports of apple scab in were made in 1819 by Swedish botanist,

Elias Fries.[6] However, genetic studies have indicated that apple scab likely emerged in Central Asia.[8] As neither the spores nor conidia of this disease are capable of travelling great distances, it is likely that apple scab spread through the movement of domesticated apple trees by migrating humans.[8][7] By the end of the 19th century, the disease had spread to North America and Oceania alongside the importation of host plants. Today apple scab is present in nearly all regions where apples are cultivated, with the most significant infections occurring in temperate areas, where it is cool and moist in the spring.[7]

Disease Cycle

The disease cycle begins in early spring, when cool temperatures and abundant moisture promote the release of sexual spores (

pseudothecia
, which serve as a source of primary inoculum for the next spring.

Predicting infection

First developed in 1944 by American plant pathologist, W.D. Mills, a Mills Table predicts the likelihood of infection by apple scab based on the average temperature and the number of hours of leaf wetness that the host is subjected to.[9] This prediction system has been rapidly adopted in both Europe and North America, where apple growers use it as an early warning system for new infections, allowing them to apply preventative fungicides when appropriate.[10] Increasing the accuracy of application timings may not reduce their impact on the environment, but may also reduce the cost of imputs for growers.[11] Several revisions have been made to the Mills Table since its creation in 1944, most notably was the revision made in 1989 by MacHardy and Gadoury, who determined that ascospores required 3 hours less than originally calculated in order to establish a new infection.[10] While other methods of prediction include ascospore maturation models and leaf orchard leaf canopy models, the Mill's Table, combined with electronic weather monitoring, remains the most-widely used tool for predicting apple scab infection periods.[7]

Management of Apple Scab

Cultural Controls

Cultural controls may be used as a first step when seeking to reduce the incidence of new infections. These practices include cleaning leaf litter from the base of previously-infected trees, as well as removing infected woody material from the canopy when performing annual pruning.[12] Doing so will reduce the amount of primary inoculum in the spring and subsequently delay the establishment the disease. Furthermore, regular pruning will improve air flow and light penetration in the canopy, which ultimately inhibits the development and spread of disease.[12]

Chemical Controls

The management of apple scab using chemical controls is primarily concerned with the prevention primary infection cycle by reducing the efficacy of ascospores. As such, fungicides are typically applied early in the season, when ascospores are first released.

quinone outside inhibitors. [14] To manage the development of fungicide resistance, growers can reduce the number of applications made throughout the season and alternate between different classes of fungicide.[7]

In organic production systems, orchardists commonly use copper- or sulfur-based protectant sprays to reduce the efficacy of primary inoculum. These sprays were among the first known methods of preventing apple scab infection; however, that they do little to manage pre-existing infections and application may damage the foliage of treated trees.[15] Moreover, research has indicated that applications of copper-based fungicides may result in changes in the structure and functionality of soil microbiota, thus having a negative effect on soil health.[16] As such, alternative management strategies appropriate for organic production systems are currently being developed.

Biological Control

Biological control refers to the use of a population of one organism (a biological control agent) to suppress the population of another.[17] There are very few biological control agents registered for the control of apple scab. One of the most widely-recognized products is Serenade® ASO, a microbial biofungicide which uses Bacillus subtilis as its active ingredient and may be used to control foliar diseases. [18][19] Furthermore, several fungal antagonists have been isolated and identified as potential biocontrols. One of such antagonists is Cladosporium cladosporioides (strain H39). This antagonistic fungus has demonstrated significant bioactivity against apple scab. This was indicated in a 2015 study, which found that applications of C. cladosporioides could reduce leaf scab incidence by 42-98% and apple scab incidence by 41-94% in both conventionally and organically managed orchards.[11]

Resistance Breeding Programs

The first formal resistance breeding programs for apple scab began in the early 20th century with the development of the

University of Illinois. Since its inception in 1945, the PRI Apple Breeding Program has used controlled crosses between cultivated apples and wild Malus species to develop 1500 resistant cultivars, 16 of which (including 'Prima,' 'Jonafree,' and 'Goldrush') have been named released into market. [20] Modern genetic work has found that a total of fifteen genes may confer resistance to apple scab.[6] Many of these genes have been isolated from wild Malus spp. populations in East Asia, where a high level of species diversity still remains.[7] Of these resistance genes, the Vf (Rvi6) gene is the most well-studied and is currently being used by researchers seeking to develop resistant cultivars using transgenic technology.[6] While the development of transgenic resistant cultivars may reduce management costs in orchards, limited market acceptance pose a barrier to adoption by commercial growers.[7] Moreover, researchers have observed a breakdown of resistance genes by Venturia populations, posing another significant barrier to the success of this technology.[11]

See Also

References

  1. ^ a b c "Apple Disease - Apple Scab". Penn State Extension. Retrieved 2020-02-18.
  2. ^ "Apple scab of apples and crabapples". extension.umn.edu. Retrieved 2020-03-09.
  3. ^ admin (2015-03-06). "Apple Scab". Center for Agriculture, Food and the Environment. Retrieved 2020-03-09.
  4. ^ a b c d Agriculture, Ministry of. "Apple Scab Management in British Columbia - Province of British Columbia". www2.gov.bc.ca. Retrieved 2020-02-18.
  5. ^ a b c d e f "Apple scab". Apple scab. Retrieved 2020-02-18.
  6. ^ a b c d e f Jha, G., Thakur, K., & Thakur, P. (2009). The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses. Journal of Biomedicine and Biotechnology, 2009. doi:10.1155/2009/680160
  7. ^
    PMID 21199562.{{cite journal}}: CS1 maint: PMC format (link
    )
  8. ^ a b Gladieux, Pierre (2008). "On the Origin and Spread of the Scab Disease of Apple: Out of Central Asia". PLoS One. 3 – via ProQuest.
  9. ^ Schumann, Gail (1991). Plant diseases: Their biology and social impact. St. Paul, Minnesota, USA: The American Phytopathological Society. pp. 173–177.
  10. ^
    ISSN 0367-973X. {{cite journal}}: Check date values in: |date= (help
    )
  11. ^ .
  12. ^ a b admin (2015-03-06). "Apple Scab". Center for Agriculture, Food and the Environment. Retrieved 2020-02-20.
  13. ISSN 1439-0434
    .
  14. ISSN 0191-2917. {{cite journal}}: Check date values in: |date= (help
    )
  15. ^ Gauthier, Nicole (2018). "Apple scab". American Phytopathological Society.{{cite web}}: CS1 maint: url-status (link)
  16. ISSN 0944-1344
    .
  17. ^ van Lenteren, J.C. (2012). "IOBC Internet Book of Biological Control, version 6" (PDF). International Organisation for Biological Control.{{cite web}}: CS1 maint: url-status (link)
  18. ^ "Serenade ASO Fungicide | Crop Science US". www.cropscience.bayer.us. Retrieved 2020-04-06.
  19. ^ "Apple (Malus spp.)-Scab". Pacific Northwest Pest Management Handbooks. 2015-09-11. Retrieved 2020-04-06.
  20. ^ Janick, Jules (2006). "The PRI Apple Breeding Program" (PDF). HortScience. 41: 8–10.