Базис
Ба́зис (
В случае, когда базис бесконечен, понятие «линейная комбинация» требует уточнения. Это ведёт к двум основным разновидностям определения:
- Базис Га́меля (англ. Hamel basis), в определении которого рассматриваются только конечные линейные комбинации; применяется в основном в абстрактной алгебре.
- ряды; применяется в основном в функциональном анализе, в частности, для гильбертова пространства.
В конечномерных пространствах оба определения базиса совпадают.
Происхождение термина
У
Базис на плоскости и в трёхмерном пространстве
Любой декартовой системе координат на плоскости или в трёхмерном пространстве (также и в пространстве другой размерности) может быть сопоставлен базис, состоящий из векторов, каждый из которых направлен вдоль своей координатной оси. Это относится и к прямоугольным
Часто удобно выбрать длину (
Наиболее часто базис выбирают ортогональным и нормированным одновременно, тогда он называется
В любом векторном пространстве базис можно выбрать различным образом (поменяв направления его векторов или их длины, например).
Обозначения
Обозначение векторов базиса может быть, в принципе, произвольным. Часто используют какую-нибудь букву с индексом (числовым или совпадающим с названием координатной оси), например:
или
— типичные обозначения базиса двумерного пространства (плоскости),

или
— трёхмерного пространства. Для трёхмерного пространства часто по традиции используется и обозначение
Представление какого-то конкретного (любого) вектора пространства в виде линейной комбинации векторов базиса (суммы базисных векторов числовыми коэффициентами), например
или
или, употребляя знак суммы :
называется разложением этого вектора по этому базису.
Числовые коэффициенты называются коэффициентами разложения, а их набор в целом — представлением (или представителем) вектора в базисе (Разложение вектора по конкретному базису единственно; разложение одного и того же вектора по разным базисам — разное, то есть получается разный набор конкретных чисел, однако в результате при суммировании — как показано выше — дают один и тот же вектор).
Виды базисов
Базис Гамеля
Базис Га́меля — множество
Критерием единственности решения задачи разложения вектора по полной системе векторов является линейная независимость векторов, входящих в полную систему. Линейная независимость означает, что всякая линейная комбинация векторов системы, в которой хотя бы один коэффициент ненулевой, имеет ненулевую сумму. То есть это эквивалентно единственности разложения нулевого вектора.
В случае линейных пространств, когда всякий ненулевой коэффициент обратим, линейная независимость эквивалентна невозможности выразить какой-либо вектор полной системы линейной комбинацией остальных векторов. (В более общей ситуации — модулей над кольцами — эти два свойства неэквивалентны). Невозможность выразить никакой вектор базиса через остальные означает минимальность базиса как полной системы векторов — при удалении любого из них теряется полнота.
В вопросе о существовании базисов основной является следующая лемма (доказательство этой леммы в общем случае неконструктивно и использует аксиому выбора):
Лемма. Пусть — полная, а — линейно независимая система векторов. Тогда система содержит набор векторов, дополняющий до базиса пространства .
Доказательство строится на применении леммы Цорна. Рассмотрим . Пусть — множество всех линейно независимых подмножеств . Это множество частично упорядочено по отношению включения.
Докажем, что объединение любой цепи линейно независимых множеств остаётся линейно независимым. Действительно, возьмём вектора из объединения и возьмём множества из цепи, которым эти вектора принадлежат: . Так как эти множества — элементы цепи, их объединение даст максимальное из них, которое линейно независимо, а значит и вектора , лежащие в этом множестве, также линейно независимы.
Объединение множеств цепи линейно независимо, а значит, содержится в множестве . Применим к нему усиленную формулировку леммы Цорна, которая утверждает, что для каждого элемента из есть максимальный элемент больший или равный ему. , а значит, есть такой максимальный элемент , что . Легко видеть, что есть базис. Действительно, не будь полной системой векторов, был бы вектор , непредставимый как линейная комбинация векторов из . Тогда — линейно независимая система, а значит, , что противоречит тому, что —— максимальный элемент .
Следствием этой леммы являются утверждения:
- Каждое линейное пространство обладает базисом.
- Базис пространства можно выделить из любой полной системы векторов.
- Всякую линейно независимую систему можно дополнить до базиса пространства V.
Любые два базиса в линейном пространстве равномощны, так что мощность базиса — величина, независящая от выбора базисных векторов. Она называется размерностью пространства (обозначается ). Если линейное пространство имеет конечный базис, его размерность конечна и оно называется конечномерным, в противном случае его размерность бесконечна, и пространство называется бесконечномерным.
Выбранный базис линейного пространства позволяет ввести координатное представление векторов, чем подготавливается использование аналитических методов.
Линейное отображение из одного линейного пространства в другое однозначно определено, если задано на векторах какого-нибудь базиса. Комбинация этого факта с возможностью координатного представления векторов предопределяет применение матриц для изучения линейных отображений векторных пространств (в первую очередь — конечномерных). При этом многие факты из теории матриц получают наглядное представление и приобретают весьма содержательный смысл, когда они выражены на языке линейных пространств. И выбор базиса при этом служит хоть и вспомогательным, но в то же время ключевым средством.
Примеры
- Векторы пространства образуют базис тогда и только тогда, когда определитель матрицы, составленной из координатных столбцов этих векторов, не равен 0: .
- В пространстве всех многочленов над полем один из базисов составляют степенные функции: .
- Понятие базиса используется в бесконечномерном случае, например вещественные числа образуют линейное пространство над рациональными числами и оно имеет континуальный базис Гамеля и, соответственно, континуальную размерность.
Базис Гамеля и разрывная линейная функция
Базис Гамеля может быть использован для построения разрывной вещественной функции, удовлетворяющей условию . Пусть — базис Гамеля множества действительных чисел над полем рациональных чисел . Тогда для каждого () положим , где произвольные вещественные числа, не все равные нулю одновременно; например, рациональные (в этом случае функция принимает лишь рациональные значения и тем самым гарантированно не является линейной функцией ). Такая функция аддитивна, то есть удовлетворяет функциональному уравнению Коши . Однако в общем случае, когда , она отличается от линейной функции и в силу этого является
Базис Шаудера
![]() | В другом языковом разделе есть более полная статья Schauder basis (англ.). |
Система векторов топологического векторного пространства называется базисом Шаудера (в честь
где — числа, называемые коэффициентами разложения вектора по базису .
Чтобы подчеркнуть отличие определения базиса Гамеля для общих линейных пространств (допускаются только конечные суммы) от базиса Шаудера для
Например, никакое бесконечномерное Гильбертово пространство не имеет счетного линейного базиса, хотя может иметь счетные базисы Шаудера с разложением в ряд, в том числе, ортонормированные базисы. Все ортонормированные базисы гильбертовых пространств являются базисами Шаудера, например, множество функций является базисом Шаудера в пространстве . В более общих банаховых пространствах понятие ортонормированного базиса неприменимо, но часто удаётся построить базисы Шаудера, не использующие ортогональности.
Пример: базис Шаудера для пространства непрерывных функций C[a, b]
— банахово пространство с нормой . Для разложений в ряды Фурье и обобщенные ряды Фурье по ортонормированным системам функций легко доказывается сходимость в гильбертовом пространстве , но не в . Шаудер сконструировал базис Шаудера для . Пусть — плотное счетное множество точек на , , , остальные точки могут быть, например, всеми рациональными точками отрезка , упорядоченными произвольным образом. Положим: , — линейная функция. Определим кусочно-линейную функцию так, чтобы при и . Точки разбивают на отрезок. Точка лежит строго внутри одного из них. Пусть это для каких-то (порядок нумерации чисел не соответствует их величине).

Положим:
- вне отрезка
- при
- при
Полученная система кусочно-линейных «шапочек» и есть искомый базис Шаудера. Коэффициенты разложения произвольной функции по этому базису выражаются по явным рекуррентным формулам через последовательность значений . Частичная сумма первых членов ряда
является в данном случае кусочно-линейной аппроксимацией с узлами в точках ; формула для коэффициентов (см. Рис.)
Проблема базиса
Базисы Шаудера построены для большинства известных примеров банаховых пространств, однако проблема Банаха — Шаудера о существовании базиса Шаудера в каждом сепарабельном банаховом пространстве не поддавалась решению более 50 лет и лишь в 1972 году была решена отрицательно: существуют сепарабельные банаховы пространства без базиса Шаудера (контрпримеры Энфло[1], Шанковского, Дэви и Фигеля).
Применение в кристаллографии
В векторной алгебре с помощью векторного произведения и смешанного произведения определяется понятие взаимного базиса к базису в трёхмерном евклидовом пространстве и используется для доказательства некоторых утверждений, связанных со смешанным произведением и углами между векторами[2]:212-214. В кристаллографии взаимный базис называется кристаллографическим определением базиса, на основе которого определяется обратная решётка.
См. также
- Репер — близкое понятие.
- Ортогональный базис — специальный класс базисов (базисов Шаудера) для пространств со скалярным произведением (Гильбертово пространство).
- Базис Грёбнера
- Базис Рисса
- Конечномерное пространство
- Флаг (математика)
Примечания
- doi:10.1007/BF02392270. Архивировано 20 июля 2020 года.= A counterexample to the approximation problem in Banach spaces // Математика / пер. Б. С. Митягина. — 1974. — Т. 18, вып. 1. — С. 146–155.
перевод: Пер Энфло. Контрпример в проблеме аппроксимации в банаховом пространстве - ↑ Гусятников П.Б., Резниченко С.В. Векторная алгебра в примерах и задачах. — М.: Высшая школа, 1985. — 232 с. Архивировано 10 января 2014 года.
Литература
- Кутателадзе С. С., Основы функционального анализа. — 4 изд., испр. — Новосибирск: Изд-во Ин-та Математики СО РАН, 2001. — XII+354 c.