Система координат

Материал из Википедии — свободной энциклопедии

Систе́ма координа́т — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.

В

атласа
.

В

сферическими координатами
, где начало координат находится в центре сферы.

В географии координаты выбираются как (приближённо) сферическая система координат — широта, долгота и высота над известным общим уровнем (например, океана). См. Географические координаты.

В

небесные координаты — упорядоченная пара угловых величин (например, прямое восхождение и склонение), с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической
(галактическая плоскость).

Наиболее используемая система координат —

декартова система координат
).

Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и системы референции.

Основные системы

Точка P и её координаты в трёхмерной системе координат (с осью Х, направленной к читателю)

В этом разделе даются разъяснения к наиболее употребляемым системам координат в элементарной математике.

Декартовы координаты

Расположение точки P на плоскости определяется декартовыми координатами с помощью пары чисел

  •  — расстояние от точки P до оси y с учётом знака
  •  — расстояние от точки P до оси x с учётом знака

В пространстве необходимы уже три координаты

  •  — расстояние от точки P до плоскости yz
  •  — расстояние от точки P до плоскости xz
  •  — расстояние от точки P до плоскости xy

Полярные координаты

Полярные координаты.

В полярной системе координат, применяемой на плоскости, положение точки P определяется её расстоянием до начала координат r = |OP| и углом φ её радиус-вектора к оси Ox.

В пространстве применяются обобщения полярных координат — цилиндрические и сферические системы координат.

Цилиндрические координаты

Цилиндрические координаты.

Цилиндрические координаты — трёхмерный аналог полярных, в котором точка P представляется упорядоченной тройкой В терминах декартовой системы координат,

  • (радиус) — расстояние от оси z до точки P,
  • (азимут или долгота) — угол между положительной («плюсовой») частью оси x и отрезком, проведённым от полюса до точки P и спроектированной на плоскость xy.
  • (высота) равна декартовой z-координате точки P.
Примечание: в литературе для первой (радиальной) координаты иногда используется обозначение ρ, для второй (угловой, или азимутальной) — обозначение θ, для третьей координаты — обозначение h.

Полярные координаты имеют один недостаток: значение φ не определено при r = 0.

Цилиндрические координаты полезны для изучения систем, симметричных относительно некоторой оси. Например, длинный цилиндр с радиусом R в декартовых координатах (с осью z, совпадающей с осью цилиндра) имеет уравнение тогда как в цилиндрических координатах оно выглядит гораздо проще, как r = R.

Сферические координаты

Сферические координаты.

Сферические координаты — трёхмерный аналог полярных.

В сферической системе координат расположение точки P определяется тремя компонентами: В терминах декартовой системы координат,

  • (радиус) — расстояние от точки P до полюса,
  • (азимут или долгота) — угол между положительной («плюсовой») полуосью x и проекцией отрезка, проведённого из полюса до точки P, на плоскость xy.
  • (широта или полярный угол) — угол между положительной («плюсовой») полуосью z и отрезком, проведённым из полюса до точки P.
Примечание: в литературе иногда азимут обозначается θ, а полярный угол - φ. Иногда для радиальной координаты используется r вместо ρ. Кроме того, диапазон углов для азимута может выбираться как (−180°, +180°] вместо диапазона [0°, +360°). Наконец, полярный угол может отсчитываться не от положительного направления оси z, а от плоскости xy; в этом случае он лежит в диапазоне [−90°, +90°], а не в диапазоне [0°, 180°]. Иногда порядок координат в тройке выбирается отличным от описанного; например, полярный и азимутальный углы могут быть переставлены.

Сферическая система координат также имеет недостаток: φ и θ не определены, если ρ = 0; угол φ не определён также и для граничных значений θ = 0 и θ = 180° (или для θ = ±90°, в случае принятия соответствующего диапазона для этого угла).

Для построения точки P по её сферическим координатам нужно от полюса вдоль положительной полуоси z отложить отрезок, равный ρ, повернуть его на угол θ вокруг оси y в направлении положительной полуоси x, и затем повернуть на угол θ вокруг оси z в направлении положительной полуоси y.

Сферические координаты полезны при изучении систем, симметричных относительно точки. Так, уравнение сферы с радиусом R в декартовых координатах с началом отсчёта в центре сферы выглядит как тогда как в сферических координатах оно становится намного проще:

Другие распространённые системы координат

  • однородных координат. Точка с барицентрическими координатами расположена в n-мерном векторном пространстве En, а собственно координаты при этом относятся к фиксированной системе точек, которые не лежат в (n−1)-мерном подпространстве. Барицентрические координаты используются также и в алгебраической топологии применительно к точкам симплекса[2]
    .
  • Биангулярные координаты — частный случай бицентрических координат, система координат на плоскости, задаваемая двумя фиксированными точками С1 и С2, через которые проводится прямая, выступающая в качестве оси абсцисс. Позиция некоторой точки P, которая не лежит на этой прямой, определяется углами
    PC1C2 и PC2C1.
  • Биполярные координаты [3] характеризуются тем, что в качестве координатных линий на плоскости в этом случае выступают два семейства окружностей с полюсами A и B, а также семейство окружностей, ортогональных к ним. Преобразование биполярных координат в декартовы прямоугольные осуществляется посредством специальных формул. Биполярные координаты в пространстве называются бисферическими; в этом случае координатными поверхностями являются сферы, поверхности, образуемые вращением дуг окружностей, а также полуплоскости, проходящие через ось Oz[4]
    .
  • Бицентрические координаты — всякая система координат, которая основана на двух фиксированных точках и в рамках которой положение некоторой другой точки определяется, как правило, степенью её удаления или вообще позицией относительно этих двух основных точек. Системы подобного рода могут быть довольно полезны в определённых сферах научных исследований[5][6]
    .
  • Бицилиндрические координаты — система координат, которая образуется в том случае, если система биполярных координат на плоскости Oxy параллельно переносится вдоль оси Oz. В качестве координатных поверхностей в этом случае выступают семейство пар круговых цилиндров, оси которых параллельны, семейство ортогональных к ним круговых цилиндров, а также плоскость. Для перевода бицилиндрических координат в декартовы прямоугольные для трехмерного пространства также применяются специальные формулы[7].
  • Конические координаты — трехмерная ортогональная система координат, состоящая из концентрических сфер, которые описываются посредством их радиуса, и двух семейств перпендикулярных конусов, расположенных вдоль осей x и z[8].
  • оси симметрии этих парабол. У параболических координат также имеется определенный спектр потенциальных практических приложений: в частности, они могут использоваться применительно к эффекту Штарка. Параболические координаты связаны определенным отношением с прямоугольными декартовыми[9]
    .
  • Проективные координаты существуют, согласно наименованию, в проективном пространстве Пn (К) и представляют собой взаимно однозначное соответствие между его элементами и классами конечных подмножеств элементов тела К, характеризующихся свойствами эквивалентности и упорядоченности. Для определения проективных координат проективных подпространств достаточно определить соответствующие координаты точек проективного пространства. В общем случае относительно некоторого базиса проективные координаты вводятся чисто проективными средствами[10]
    .
  • Тороидальная система координат — трехмерная ортогональная система координат, получаемая в результате вращения двумерной биполярной системы координат вокруг оси, разделяющей два её фокуса. Фокусы биполярной системы, соответственно, превращаются в кольцо с радиусом а, лежащее на плоскости xy тороидальной системы координат, в то время как ось z становится осью вращения системы. Фокальное кольцо также называют иногда базовой окружностью[11].
  • Трилинейные координаты являются одним из образцов однородных координат и имеют своей основой заданный треугольник, так что положение некоторой точки определяется относительно сторон этого треугольника — главным образом степенью удаленности от них, хотя возможны и другие вариации. Трилинейные координаты могут быть относительно просто преобразованы в барицентрические; кроме того, они также конвертируемы в двумерные прямоугольные координаты, для чего используются соответствующие формулы[12]
    .
  • Цилиндрические параболические координаты — трехмерная ортогональная система координат, получаемая в результате пространственного преобразования двумерной параболической системы координат. Координатными поверхностями, соответственно, служат конфокальные параболические цилиндры. Цилиндрические параболические координаты связаны определенным отношением с прямоугольными, могут быть применены в ряде сфер научных исследований[13].
  • эллиптические координаты в пространстве. Координатными поверхностями в данном случае являются эллипсоиды, однополостные гиперболоиды, а также двуполостные гиперболоиды, центры которых расположены в начале координат. Система ортогональна. Каждой тройке чисел, являющихся эллипсоидальными координатами, соответствуют восемь точек, которые относительно плоскостей системы Oxyz симметричны друг другу[14]
    .

Переход из одной системы координат в другую

Декартовы и полярные

где u0 — функция Хевисайда с а sgn —

квадранте
, определённом координатами x и y.

Декартовы и цилиндрические

Декартовы и сферические

Цилиндрические и сферические

Географическая система координат

Географическая система координат обеспечивает возможность идентификации любой точки на поверхности

горизонтали. Традиционный набор географических координат — широта, долгота и высота[15]
. Географическая система координат с использованием трёх перечисленных указателей является ортогональной.

Широта точки на поверхности Земли определяется как угол между плоскостью

Гринвиче, близ Лондона. Что касается высоты, то она отсчитывается от условной поверхности геоида
, являющегося абстрактным пространственным представлением земного шара.

См. также

Примечания

  1. Пархоменко А. С. Аффинная система координат. — Математическая энциклопедия. — М.: Советская энциклопедия, 1977—1985.
  2. Скляренко Е. Г. Барицентрические координаты. — Математическая энциклопедия. — М.: Советская энциклопедия, 1977—1985.
  3. Weisstein, Eric W. Bipolar coordinates (англ.) на сайте Wolfram MathWorld.
  4. Долгачев И. В., Псковских В. А. Биполярные координаты. — Математическая энциклопедия. — М.: Советская энциклопедия, 1977—1985.
  5. R. Price, The Periodic Standing Wave Approximation: Adapted coordinates and spectral methods. Дата обращения: 11 мая 2013. Архивировано 4 марта 2016 года.
  6. The periodic standing-wave approximation: nonlinear scalar fields, adapted coordinates, and the eigenspectral method. Дата обращения: 11 мая 2013. Архивировано 2 апреля 2019 года.
  7. Соколов Д. Д. Бицилиндрические координаты. — Математическая энциклопедия. — М.: Советская энциклопедия, 1977—1985.
  8. MathWorld description of conical coordinates. Дата обращения: 11 мая 2013. Архивировано 6 октября 2013 года.
  9. MathWorld description of parabolic coordinates. Дата обращения: 11 мая 2013. Архивировано 2 июня 2013 года.
  10. Войцеховский М. И. Проективные координаты. — Математическая энциклопедия. — М.: Советская энциклопедия, 1977—1985.
  11. MathWorld description of toroidal coordinates. Дата обращения: 11 мая 2013. Архивировано 20 мая 2021 года.
  12. Weisstein, Eric W. Trilinear Coordinates (англ.) на сайте Wolfram MathWorld.
  13. MathWorld description of parabolic cylindrical coordinates. Дата обращения: 11 мая 2013. Архивировано 11 ноября 2020 года.
  14. Соколов Д. Д. Эллипсоидальные координаты. — Математическая энциклопедия. — М.: Советская энциклопедия, 1977—1985.
  15. A Guide to coordinate systems in Great Britain Архивировано 22 апреля 2008 года. v 1.7 October 2007

Литература

Ссылки