Контактное число

Материал из Википедии — свободной энциклопедии

Контактное число (иногда число Ньютона

шаров единичного радиуса, которые могут одновременно касаться одного такого же шара в n-мерном евклидовом пространстве (предполагается, что шары не проникают друг в друга, то есть объём пересечения
любых двух шаров равен нулю).

Следует отличать контактное число от контактного числа на решётке

упаковки шаров. Вычисление контактного числа в общем случае до сих пор является нерешённой математической задачей
.

История

В одномерном случае не более двух отрезков единичной длины могут касаться такого же отрезка:

В двумерном случае можно интерпретировать задачу как нахождение максимального числа монет, касающихся центральной. Из рисунка видно, что разместить можно до 6 монет:

Это значит, что . С другой стороны, каждая касающаяся окружность отсекает на центральной окружности дугу в 60°, и эти дуги не пересекаются, значит . Видно, что в данном случае оценки сверху и снизу совпали и .

Пример расположения 12 шаров

В трёхмерном случае речь идет о шарах. Здесь также легко построить пример с 12 шарами, касающимися центрального — они расположены в вершинах икосаэдра — поэтому . Данная нижняя оценка была известна ещё Ньютону.

Это расположение неплотное, между шарами будут довольно заметные зазоры. Оценка сверху стала причиной известного спора между Ньютоном и Д. Грегори в 1694 году. Ньютон утверждал, что , а Грегори возражал, что может быть можно расположить и 13 шаров. Он провёл вычисления и выяснил, что площадь центрального шара более чем в 14 раз больше площади проекции каждого из касающихся шаров, так что . Если позволить менять радиусы шаров на 2 %, то оказывается возможным прислонить до 14 шаров.

Лишь в 1953 году в статье Шютте и

ван дер Вардена[4]
была окончательно установлена правота Ньютона, несмотря на отсутствие у того строгого доказательства.

В четырёхмерном случае представить себе шары достаточно сложно. Размещение 24 четырёхмерных сфер вокруг центральной было известно давно[источник не указан 3528 дней], оно столь же регулярное, как и в двумерном случае, и решает одновременно и задачу о контактном числе на решётке. Это то же размещение, что у целых единичных кватернионов.

В явном виде это расположение было указано в 1900 году Госсетом[5]. Ещё раньше оно было найдено (в эквивалентной задаче) в 1872 году российскими математиками Коркиным и Золотарёвым[6][7]. Это расположение дало оценку снизу .

Попытки оценить это число сверху привели к развитию тонких методов теории функций, но не давали точного результата. Сначала удалось доказать, что , потом удалось снизить верхнюю границу до . И наконец в 2003 году российскому математику Олегу Мусину удалось доказать, что [8].

В размерностях 8 и 24 точная оценка была получена в 1970-е годы[9][10]. Доказательство основано на равенстве контактного числа и контактного числа на решётке в этих размерностях: решётки E8 (для размерности 8) и решётки Лича (для размерности 24).

Известные значения и оценки

Известные оценки контактных чисел в n-мерном пространстве.

В настоящее время точные значения контактных чисел известны только для , а также для и . Для некоторых других значений известны верхние и нижние оценки.

Размерность Нижняя граница Верхняя граница
1 2
2 6
3 12
4 24[8]
5 40 44[11]
6 72 78[11]
7 126 134[11]
8 240
9 306 364[11]
10 510[12] 554
11 592[12] 870
12 840 1 357
13 1 154[13] 2 069
14 1 932[12] 3 183
15 2 564 4 866
16 4 320 7 355
17 5 346 11 072
18 7 398 16 572[11]
19 10 688 24 812[11]
20 17 400 36 764[11]
21 27 720 54 584[11]
22 49 896 82 340
23 93 150 124 416
24 196 560

Приложения

Задача имеет практическое применение в теории кодирования. В 1948 году

передачи данных без ошибок в зашумленных каналах связи используя координаты упаковки единичных сфер в n-мерном пространстве. См. также Расстояние Хэмминга
.

См. также

Примечания

  1. Яглом, И. М. Проблема тринадцати шаров. — Киев: Вища школа, 1975. — 84 с. Архивировано 28 июня 2020 года.
  2. 1 2 Дж. Конвей, Н. Слоэн. Упаковки шаров, решётки и группы. — М.: Мир, 1990. — Т. 1. — 415 с. — ISBN 5-03-002368-2. Архивировано 6 октября 2014 года. Архивированная копия. Дата обращения: 29 мая 2011. Архивировано 6 октября 2014 года.
  3. Контактные числа на решётках: последовательность A001116 в OEIS
  4. .
  5. Gosset, Thorold. On the regular and semi-regular figures in space of n dimensions (англ.) // Messenger of Mathematics[англ.] : journal. — 1900. — Vol. 29. — P. 43—48.
  6. . Рус. пер.: Золотарёв Е. И. Полн. собр. соч. — Л.: Изд-во АН СССР, 1931. — С. 66—68.
  7. Н. Н. Андреев, В. А. Юдин. Арфиметический минимум квадратичной формы и сферические коды // Математическое просвещение. — 1998. — № 2. — С. 133—140. Архивировано 3 марта 2022 года.
  8. 1 2 Мусин О. Р. Проблема двадцати пяти сфер // Успехи математических наук. — Российская академия наук, 2003. — Т. 58, № 4(352). — С. 153—154.
  9. Левенштейн В. И. О границах для упаковок в n-мерном евклидовом пространстве // ДАН СССР. — 1979. — Т. 245. — С. 1299—1303.
  10. .
  11. 1 2 3 4 5 6 7 8 Hans D. Mittelmann and Frank Vallentin. [http://arxiv.org/abs/0902.1105 High-Accuracy Semidefinite Programming Bounds for Kissing Numbers] // Experimental Mathematics. — 2010. — Т. 19, № 2. — С. 174—178. Архивировано 11 августа 2020 года.
  12. 1 2 3 Mikhail Ganzhinov. Highly symmetric lines // arXiv:2207.08266 [math]. — 2022-07-17. Архивировано 30 марта 2023 года.
  13. В. А. Зиновьев, Т. Эриксон. Новые нижние оценки на контактное число для небольших размерностей // Пробл. передачи информ.. — 1999. — Т. 35, № 4. — С. 3—11.

Ссылки