Максимальный идеал

Материал из Википедии — свободной энциклопедии

Максимальным идеалом

собственный идеал
кольца, не содержащийся ни в каком другом собственном идеале.

Свойства

  • Характеристическое свойство максимального идеала: идеал кольца максимален тогда и только тогда, когда факторкольцо является полем (в нём каждый ненулевой элемент обратим).
  • Если кольцо R имеет структуру коммутативной банаховой алгебры над полем комплексных чисел С, факторкольцо по максимальному идеалу R/I изоморфно C. В этом случае идеал I определяет гомоморфизм кольца R в поле C, ядром которого является идеал I.
    Для каждого a существует единственное число , такое что (e - единица алгебры R). Соответствие и есть тот самый гомоморфизм.
  • Из характеристического свойства следует, что всякий максимальный идеал является простым.

Примеры

  • В кольце целых чисел Z максимальными идеалами являются все простые идеалы: если p - простое число, тогда идеал (p)=pZ максимален. Например, чётные числа образуют максимальный идеал, а числа, кратные 4 - образуют идеал, но не максимальный - этот идеал содержится в идеале чётных чисел.
  • В кольце многочленов k[X,Y], где k - алгебраически замкнутое поле, максимальные идеалы имеют вид .
  • Кольцо степенных рядов над полем k - локальное кольцо. Необратимые элементы - те, которые не содержат свободного члена. Они образуют идеал. Он - единственный максимальный идеал в этом кольце.