Универсальная газовая постоянная
Универса́льная га́зовая постоя́нная — константа, численно равная работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 К. Равна произведению постоянной Больцмана и числа Авогадро. Обозначается латинской буквой R.
Общая информация
И. П. Алымов (1865)[1][2][3], Цейнер (1866)[4], Гульдберг (1867)[5], Горстман (1873)[6] и Д. И. Менделеев (1874)[7][2][3] пришли к выводу, что произведение индивидуальной для каждого газа постоянной в уравнении Клапейрона на молекулярный вес μ газа должно быть постоянной для всех газов величиной. Д. И. Менделеев вычислил[8][9] значение константы R, используя закон Авогадро, согласно которому 1 моль различных газов при одинаковом давлении и температуре занимает одинаковый объём
Входит в уравнение состояния идеального газа в формулу для коэффициента диффузии сферических броуновских частиц и в ряд других уравнений молекулярно-кинетической теории.
В
- R = 8,314 462 618 153 24 Дж/(моль∙К).
В системе СГС универсальная газовая постоянная равна R = 83 144 626,181 532 4 эрг/(моль∙К) (точно).
Универсальная газовая постоянная равна разности молярных теплоёмкостей идеального газа при постоянном давлении и постоянном объёме: Кроме того, поскольку отношение теплоёмкостей данного идеального газа является его показателем адиабаты можно записать следующие соотношения:
У идеального газа показатель адиабаты связан с числом степеней свободы f молекулы соотношением что позволяет сразу вычислять молярные теплоёмкости газов, близких к идеальным. Например, для воздуха (в основном двухатомного газа, молекулы которого при комнатной температуре обладают тремя поступательными и двумя вращательными степенями свободы, f = 3+2 = 5) показатель адиабаты γ = 1 + 2/5 = 7/5, откуда Для аргона (одноатомного газа) у молекулы есть лишь три поступательные степени свободы, откуда γ = 1 + 2/3 = 5/3, а теплоёмкости
Эти соотношения обусловлены законом равнораспределения энергии по степеням свободы, утверждающим, что в тепловом равновесии при температуре T на одну степень свободы вращательного и поступательного движения молекулы приходится в среднем энергия, равная (1/2)kT, а на одну колебательную степень свободы — энергия kT[10]; здесь k — постоянная Больцмана. Для большинства двухатомных газов при комнатной температуре колебательные степени свободы не возбуждаются (это проявление квантового характера осцилляций молекулы), и их не нужно учитывать. При увеличении температуры на 1 К при постоянном объёме энергия каждой молекулы газа по каждой кинетической степени свободы в среднем увеличивается на k/2, а энергия 1 моля газа (число Авогадро молекул, NA) — на NAk/2. Так, энергия молекулы одноатомного газа увеличивается на , а энергия моля такого газа — на Отсюда становится понятной связь между универсальной газовой константой, постоянной Больцмана и числом Авогадро:
Универсальная газовая постоянная возникает и в приложениях термодинамики, относящихся к жидкостям и твёрдым телам. Так, эмпирический
Иногда рассматривается также индивидуальная газовая постоянная конкретного газа, равная отношению R к молекулярной массе данного газа (или к средней молекулярной массе смеси газов): R′ = R / μ. Для сухого воздуха R′ ≈ 287 Дж/(кг∙К), для водорода 4125 Дж/(кг∙К).
Связь между газовыми константами
Как показано выше, универсальная газовая постоянная выражается через произведение постоянной Больцмана и числа Авогадро[11]:
Постоянную Больцмана используют в формулах, описывающих изучаемое явление или поведение рассматриваемого объекта с микроскопической точки зрения (см. Молекулярно-кинетическая теория, Статистическая физика, Физическая кинетика), тогда как универсальная газовая постоянная более удобна при расчетах, касающихся макроскопических систем, когда число частиц задано в молях.
См. также
Примечания
- ↑ Алымов И., 1865, с. 106.
- ↑ 1 2 Кипнис А. Я., 1962.
- ↑ 1 2 Гельфер Я. М., 1981, с. 123.
- ↑ Zeuner G., 1866, p. 105.
- ↑ Partington J. R., 1913, p. 135.
- ↑ Partington J. R., 1949, p. 644.
- ↑ Голоушкин В. Н., 1951.
- ↑ Менделеев Д. И. О сжимаемости газов (Из лаборатории С.-Петербургского Университета) // Журнал русского химического общества и физического общества. — 1874. — Т. 6. — С. 309—352. Архивировано 30 июня 2015 года.
- ↑ Д. Менделеев. Объ упругости газовъ. 1875 г. Дата обращения: 12 января 2013. Архивировано 6 декабря 2015 года.
- ↑ Разница в два раза объясняется тем, что для вращательных и поступательных степеней свободы играет роль лишь кинетическая энергия, а для колебательных — кинетическая и потенциальная.
- ↑ Больцмана постоянная, 1988.
Литература
- Partington J. R. A Text-book of Thermodynamics (with Special Reference to Chemistry). — London: Constable & Company LTD, 1913. — x + 544 p.
- Partington J. R. An Advanced Treatise on Physical Chemistry. Vol. 1. Fundamental Principles. The Properties of Gases. — London — New York — Toronto: Longmans, Green and Co, 1949. — xlii + 943 p.
- Zeuner G. Grundzüge der mechanischen Wärmetheorie. — 2. vollständig umgearbeitete Auflage. — Leipzig: Verlag von Arthur Felix, 1866. — xvi + 568 + xxv p.
- Алымов И. Научные выводы относительно водяного пара // Морской сборник. — 1865. — Т. 77, № 3. — С. 87—113.
- Больцмана постоянная // Физическая энциклопедия. — 1988. — Т. 1. — С. 222.
- Гельфер Я. М. История и методология термодинамики и статистической физики. — 2-е изд., перераб. и доп. — М.: Высшая школа, 1981. — 536 с.
- Голоушкин В. Н. Уравнение состояния идеального газа Д.И. Менделеева // Успехи физических наук. — 1951. — Т. 45, № 4. — С. 616—621. — .
- Кипнис А. Я. К истории установления уравнения состояния идеального газа№ 13. — С. 91—94. // Вопросы истории естествознания и техники. — Изд-во АН СССР, 1962. —