Azimuth
An azimuth (
Mathematically, the
When used as a
Azimuth is usually measured in degrees (°), in the positive range 0° to 360° or in the signed range -180° to +180°. The concept is used in navigation, astronomy, engineering, mapping, mining, and ballistics.
Etymology
The word azimuth is used in all European languages today. It originates from medieval Arabic السموت (al-sumūt, pronounced as-sumūt), meaning "the directions" (plural of Arabic السمت al-samt = "the direction"). The Arabic word entered late medieval Latin in an astronomy context and in particular in the use of the Arabic version of the
In astronomy
In the
In navigation
Today, the reference plane for an azimuth is typically
Quite commonly, azimuths or compass bearings are stated in a system in which either north or south can be the zero, and the angle may be measured clockwise or anticlockwise from the zero. For example, a bearing might be described as "(from) south, (turn) thirty degrees (toward the) east" (the words in brackets are usually omitted), abbreviated "S30°E", which is the bearing 30 degrees in the eastward direction from south, i.e. the bearing 150 degrees clockwise from north. The reference direction, stated first, is always north or south, and the turning direction, stated last, is east or west. The directions are chosen so that the angle, stated between them, is positive, between zero and 90 degrees. If the bearing happens to be exactly in the direction of one of the
True north-based azimuths
Direction | Azimuth |
---|---|
N | 0° |
NNE | 22.5° |
NE | 45° |
ENE | 67.5° |
E | 90° |
ESE | 112.5° |
SE | 135° |
SSE | 157.5° |
Direction | Azimuth |
---|---|
S | 180° |
SSW | 202.5° |
SW | 225° |
WSW | 247.5° |
W | 270° |
WNW | 292.5° |
NW | 315° |
NNW | 337.5° |
In geodesy
We are standing at latitude , longitude zero; we want to find the azimuth from our viewpoint to Point 2 at latitude , longitude L (positive eastward). We can get a fair approximation by assuming the Earth is a sphere, in which case the azimuth α is given by
A better approximation assumes the Earth is a slightly-squashed sphere (an
Normal-section azimuth can be calculated as follows:[citation needed]
where f is the flattening and e the eccentricity for the chosen spheroid (e.g., 1⁄298.257223563 for WGS84). If φ1 = 0 then
To calculate the azimuth of the Sun or a star given its declination and hour angle at a specific location, modify the formula for a spherical Earth. Replace φ2 with declination and longitude difference with hour angle, and change the sign (since the hour angle is positive westward instead of east).[citation needed]
In cartography
The cartographical azimuth or grid azimuth (in decimal degrees) can be calculated when the coordinates of 2 points are known in a flat plane (cartographical coordinates):
Remark that the reference axes are swapped relative to the (counterclockwise) mathematical polar coordinate system and that the azimuth is clockwise relative to the north. This is the reason why the X and Y axis in the above formula are swapped. If the azimuth becomes negative, one can always add 360°.
The formula in radians would be slightly easier:
Note the swapped in contrast to the normal atan2 input order.
The opposite problem occurs when the coordinates (X1, Y1) of one point, the distance D, and the azimuth α to another point (X2, Y2) are known, one can calculate its coordinates:
This is typically used in triangulation and azimuth identification (AzID), especially in radar applications.
Map projections
There is a wide variety of azimuthal map projections. They all have the property that directions (the azimuths) from a central point are preserved. Some navigation systems use south as the reference plane. However, any direction can serve as the plane of reference, as long as it is clearly defined for everyone using that system.
Related coordinates
Right ascension
If, instead of measuring from and along the horizon, the angles are measured from and along the
Polar coordinate
In mathematics, the azimuth angle of a point in
Other uses
For magnetic tape drives, azimuth refers to the angle between the tape head(s) and tape.
In sound localization experiments and literature, the azimuth refers to the angle the sound source makes compared to the imaginary straight line that is drawn from within the head through the area between the eyes.
An azimuth thruster in shipbuilding is a propeller that can be rotated horizontally.
See also
- Altitude (astronomy)
- Angular displacement
- Azimuthal quantum number
- Azimuthal equidistant projection
- Azimuth recording
- Bearing (navigation)
- Clock position
- Course (navigation)
- Inclination
- Longitude
- Latitude
- Magnetic declination
- Panning (camera)
- Relative bearing
- Sextant
- Solar azimuth angle
- Sound Localization
- Zenith
Part of a series on |
Astrodynamics |
---|
![]() |
References
- 'the direction'.
- ^ "azimuth". Dictionary.com Unabridged (Online). n.d.
- ^ "Azimuth" at New English Dictionary on Historical Principles; "azimut" at Centre National de Ressources Textuelles et Lexicales; "al-Samt" at Brill's Encyclopedia of Islam; "azimuth" at EnglishWordsOfArabicAncestry.wordpress.com Archived January 2, 2014, at the Wayback Machine. In Arabic the written al-sumūt is always pronounced as-sumūt (see pronunciation of "al-" in Arabic).
- ISBN 0-8166-3661-3, p. 194
- ^ U.S. Army, Map Reading and Land Navigation, FM 21-26, Headquarters, Dept. of the Army, Washington, D.C. (7 May 1993), ch. 6, p. 2
- ^ U.S. Army, Map Reading and Land Navigation, FM 21-26, Headquarters, Dept. of the Army, Washington, D.C. (28 March 1956), ch. 3, p. 63
- ^ U.S. Army, ch. 6 p. 2
- ^ U.S. Army, Advanced Map and Aerial Photograph Reading, Headquarters, War Department, Washington, D.C. (17 September 1941), pp. 24–25
- ^ U.S. Army, Advanced Map and Aerial Photograph Reading, Headquarters, War Department, Washington, D.C. (23 December 1944), p. 15
- ^ Torge & Müller (2012) Geodesy, De Gruyter, eq.6.70, p.248
Further reading
- Rutstrum, Carl, The Wilderness Route Finder, University of Minnesota Press (2000), ISBN 0-8166-3661-3
External links
- Encyclopædia Britannica (11th ed.). 1911. .
- Collier's New Encyclopedia. 1921. .