Colors of noise
![]() | This article may be confusing or unclear to readers. (December 2021) |
Colors of noise |
---|
|
In
The practice of naming kinds of noise after colors started with
Technical definitions

Various noise models are employed in analysis, many of which fall under the above categories.
The color names for these different types of sounds are derived from a loose analogy between the spectrum of frequencies of sound wave present in the sound (as shown in the blue diagrams) and the equivalent spectrum of light wave frequencies. That is, if the sound wave pattern of "blue noise" were translated into light waves, the resulting light would be blue, and so on.[citation needed]
White noise

Pink noise

The frequency spectrum of
Since there are an infinite number of logarithmic bands at both the low frequency (DC) and high frequency ends of the spectrum, any finite energy spectrum must have less energy than pink noise at both ends. Pink noise is the only power-law spectral density that has this property: all steeper power-law spectra are finite if integrated to the high-frequency end, and all flatter power-law spectra are finite if integrated to the DC, low-frequency limit.[citation needed]
Brownian noise

Brownian noise, also called Brown noise, is noise with a power density which decreases 6.02 dB per octave (20 dB per decade) with increasing frequency (frequency density proportional to 1/f2) over a frequency range excluding zero (DC). It is also called "red noise", with pink being between red and white.
Brownian noise can be generated with temporal integration of white noise. "Brown" noise is not named for a power spectrum that suggests the color brown; rather, the name derives from Brownian motion, also known as "random walk" or "drunkard's walk".
Blue noise

Blue noise is also called azure noise. Blue noise's power density increases 3.01 dB per octave with increasing frequency (density proportional to f ) over a finite frequency range.[5] In computer graphics, the term "blue noise" is sometimes used more loosely as any noise with minimal low frequency components and no concentrated spikes in energy. This can be good noise for dithering.[6] Retinal cells are arranged in a blue-noise-like pattern which yields good visual resolution.[7]
Cherenkov radiation is a naturally occurring example of almost perfect blue noise, with the power density growing linearly with frequency over spectrum regions where the permeability of index of refraction of the medium are approximately constant. The exact density spectrum is given by the Frank–Tamm formula. In this case, the finiteness of the frequency range comes from the finiteness of the range over which a material can have a refractive index greater than unity. Cherenkov radiation also appears as a bright blue color, for these reasons.
Violet noise

Violet noise is also called purple noise. Violet noise's power density increases 6.02 dB per octave with increasing frequency[8][9] "The spectral analysis shows that GPS acceleration errors seem to be violet noise processes. They are dominated by high-frequency noise." (density proportional to f 2) over a finite frequency range. It is also known as differentiated white noise, due to its being the result of the differentiation of a white noise signal.
Due to the diminished sensitivity of the human ear to high-frequency hiss and the ease with which white noise can be electronically differentiated (high-pass filtered at first order), many early adaptations of dither to digital audio used violet noise as the dither signal.[citation needed]
Acoustic thermal noise of water has a violet spectrum, causing it to dominate hydrophone measurements at high frequencies.[10] "Predictions of the thermal noise spectrum, derived from classical statistical mechanics, suggest increasing noise with frequency with a positive slope of 6.02 dB octave−1." "Note that thermal noise increases at the rate of 20 dB decade−1"[11]
Grey noise

Velvet noise

Velvet noise is a sparse sequence of random positive and negative impulses. Velvet noise is typically characterised by its density in taps/second. At high densities it sounds similar to white noise; however, it is perceptually "smoother".[12] The sparse nature of velvet noise allows for efficient time-domain convolution, making velvet noise particularly useful for applications where computational resources are limited, like real-time reverberation algorithms.[13][14] Velvet noise is also frequently used in decorrelation filters.[15]
Informal definitions
There are also many colors used without precise definitions (or as synonyms for formally defined colors), sometimes with multiple definitions.
Red noise
- A synonym for Brownian noise, as above.[16][17] That is, it is similar to pink noise, but with different spectral content and different relationships (i.e. 1/f for pink noise, while 1/f2 for red noise, or a decrease of 6.02 dB per octave).
- In areas where terminology is used loosely, "red noise" may refer to any system where power density decreases with increasing frequency.[18]
Green noise
- The mid-frequency component of white noise, used in dithering[19]
- Bounded Brownian noise
- Vocal spectrum noise used for testing audio circuits[20]
- Joseph S. Wisniewski writes that "green noise" is marketed by producers of ambient sound effects recordings as "the background noise of the world". It simulates the spectra of natural settings, without human-made noises. It is similar to pink noise, but has more energy in the area of 500 Hz.[20]
Black noise
- Silence
- Infrasound[21]
- Noise with a 1/fβ spectrum, where β > 2. This formula is used to model the frequency of natural disasters.[22][clarification needed]
- Noise that has a frequency spectrum of predominantly zero power level over all frequencies except for a few narrow bands or spikes. Note: An example of black noise in a facsimile transmission system is the spectrum that might be obtained when scanning a black area in which there are a few random white spots. Thus, in the time domain, a few random pulses occur while scanning.[23]
- Noise with a spectrum corresponding to the violet noise. At the same time, Hawking radiation of black holes may have a peak in hearing range, so the radiation of a typical stellar black holewith a mass equal to 6 solar masses will have a maximum at a frequency of 604.5 Hz – this noise is similar to green noise. A formula is: Hz. Several examples of audio files with this spectrum can be found here.[citation needed]
Noisy white
In
- In facsimile or display systems, such as television, a nonuniformity in the white area of the image, i.e., document or picture, caused by the presence of noise in the received signal.
- A signal or record medium.
Noisy black
In
- In facsimile or display systems, such as television, a nonuniformity in the black area of the image, i.e., document or picture, caused by the presence of noise in the received signal.
- A signal or record medium.
Generation
Colored noise can be computer-generated by first generating a white noise signal, Fourier-transforming it, then multiplying the amplitudes of the different frequency components with a frequency-dependent function.[26] Matlab programs are available to generate power-law colored noise in one or any number of dimensions.
Identification of power law frequency noise
Identifying the dominant noise type in a time series has many applications including clock stability analysis and market forecasting. There are two algorithms based on autocorrelation functions that can identify the dominant noise type in a data set provided the noise type has a power law spectral density.
Lag(1) autocorrelation method (non-overlapped)
The first method for doing noise identification is based on a paper by W.J Riley and C.A Greenhall.[27] First the lag(1) autocorrelation function is computed and checked to see if it is less than one third (which is the threshold for a stationary process):
where is the number of data points in the time series, are the phase or frequency values, and is the average value of the time series. If used for clock stability analysis, the values are the non-overlapped (or binned) averages of the original frequency or phase array for some averaging time and factor. Now discrete-time fractionally integrated noises have power spectral densities of the form which are stationary for . The value of is calculated using :
where is the lag(1) autocorrelation function defined above. If then the first differences of the adjacent time series data are taken times until . The power law for the stationary noise process is calculated from the calculated and the number of times the data has been differenced to achieve as follows:
where is the power of the frequency noise which can be rounded to identify the dominant noise type (for frequency data is the power of the frequency noise but for phase data the power of the frequency noise is ).
Lag(m) autocorrelation method (overlapped)
This method improves on the accuracy of the previous method and was introduced by Z. Chunlei, Z. Qi, Y. Shuhuana. Instead of using the lag(1) autocorrelation function the lag(m) correlation function is computed instead:[28]
where is the "lag" or shift between the time series and the delayed version of itself. A major difference is that are now the averaged values of the original time series computed with a moving window average and averaging factor also equal to . The value of is computed the same way as in the pervious method and is again the criteria for a stationary process. The other major difference between this and the previous method is that the differencing used to make the time series stationary () is done between values that are spaced a distance apart:
The value of the power is calculated the same as the previous method as well.
See also
- Mains hum (also known as the AC power hum)
- Whittle likelihood
References
- ^ "ATIS Telecom Glossary". atis.org. Alliance for Telecommunications Industry Solutions. Retrieved 16 January 2018.
- ^ "Federal Standard 1037C". Institute for Telecommunication Sciences. Institute for Telecommunication Sciences, National Telecommunications and Information Administration (ITS-NTIA). Retrieved 30 November 2022.
- ^ Randall D. Peters (2 January 2012). "Tutorial on Power Spectral Density Calculations for Mechanical Oscillators".
- ^ "Definition: pink noise". its.bldrdoc.gov. Archived from the original on 8 June 2021.
- ^ "Definition: blue noise". its.bldrdoc.gov. Archived from the original on 8 June 2021.
- S2CID 207582968.
- PMID 6867716.
- ^ Transactions of the American Society of Heating, Refrigerating and Air-Conditioning Engineers 1968 [1] Quote: 'A "purple noise," accordingly, is a noise the spectrum level of which rises with frequency.'
- .
- .
- .
- S2CID 17173495.
- ^ Järveläinen, Hanna; Karjalainen, Matti (March 2007). Reverberation Modeling Using Velvet Noise. 30th International Conference: Intelligent Audio Environments. Helsinki, Finland: AES.
- ^ "The Switched Convolution Reverberator, Lee et. al".
- ^ Alary, Benoit; Politis, Archontis; Välimäki, Vesa (September 2017). Velvet-Noise Decorrelator. 20th International Conference on Digital Audio Effects (DAFx-17). Edinburgh, UK.
- ^ "Index: Noise (Disciplines of Study [DoS])". Archived from the original on 22 May 2006.
- .
- .
- doi:10.1109/5.735449.
- ^ a b Joseph S. Wisniewski (7 October 1996). "Colors of noise pseudo FAQ, version 1.3". Newsgroup: comp.dsp. Archived from the original on 30 April 2011. Retrieved 1 March 2011.
- ^ "David Bowie and the Black Noise". The Vigilant Citizen Forums. 21 May 2017.
- ISBN 978-0486472041.
- ^ "Definition of "black noise" – Federal Standard 1037C". Archived from the original on 12 December 2008. Retrieved 28 April 2008.
- ^ "Definition: noisy white". its.bldrdoc.gov. Archived from the original on 8 June 2021.
- ^ "Definition: noisy black". its.bldrdoc.gov. Archived from the original on 8 June 2021.
- .
- ISBN 978-0-86341-384-1.
- ISBN 978-1-4244-8158-3.
This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 22 January 2022.