Concept mining
Concept mining is an activity that results in the extraction of
Methods
Traditionally, the conversion of words to concepts has been performed using a thesaurus,[3] and for computational techniques the tendency is to do the same. The thesauri used are either specially created for the task, or a pre-existing language model, usually related to Princeton's WordNet.
The mappings of words to concepts[4] are often ambiguous. Typically each word in a given language will relate to several possible concepts. Humans use context to disambiguate the various meanings of a given piece of text, where available machine translation systems cannot easily infer context.
For the purposes of concept mining, however, these ambiguities tend to be less important than they are with machine translation, for in large documents the ambiguities tend to even out, much as is the case with text mining.
There are many techniques for
Applications
Detecting and indexing similar documents in large corpora
One of the spin-offs of calculating document statistics in the concept domain, rather than the word domain, is that concepts form natural tree structures based on
Clustering documents by topic
Standard numeric clustering techniques may be used in "concept space" as described above to locate and index documents by the inferred topic. These are numerically far more efficient than their text mining cousins, and tend to behave more intuitively, in that they map better to the similarity measures a human would generate.
See also
- Formal concept analysis
- Information extraction
- Compound term processing
References
- ^ Yuen-Hsien Tseng, Chun-Yen Chang, Shu-Nu Chang Rundgren, and Carl-Johan Rundgren, " Mining Concept Maps from News Stories for Measuring Civic Scientific Literacy in Media[dead link ]", Computers and Education, Vol. 55, No. 1, August 2010, pp. 165-177.
- S2CID 52841398.
- ^ Yuen-Hsien Tseng, " Automatic Thesaurus Generation for Chinese Documents", Journal of the American Society for Information Science and Technology, Vol. 53, No. 13, Nov. 2002, pp. 1130-1138.
- ^ Yuen-Hsien Tseng, " Generic Title Labeling for Clustered Documents", Expert Systems With Applications, Vol. 37, No. 3, 15 March 2010, pp. 2247-2254 .