Corn ethanol

Source: Wikipedia, the free encyclopedia.
(Redirected from
Corn-based ethanol
)

Corn is the main feedstock used for producing ethanol fuel in the United States.

Corn ethanol is

croplands are used for ethanol production.[3]

Uses

Since 2001, corn ethanol production has increased by more than several times.[4] Out of 9.50 billions of bushels of corn produced in 2001, 0.71 billions of bushels were used to produce corn ethanol. Compared to 2018, out of 14.62 billions of bushels of corn produced, 5.60 billion bushels were used to produce corn ethanol, reported by the United States Department of Energy. Overall, 94% of ethanol in the United States is produced from corn.[5]

Currently, corn ethanol is mainly used in blends with gasoline to create mixtures such as E10, E15, and E85. Ethanol is mixed into more than 98% of United States gasoline to reduce air pollution.[5] Corn ethanol is used as an oxygenate when mixed with gasoline. E10 and E15 can be used in all engines without modification. However, blends like E85, with a much greater ethanol content, require significant modifications to be made before an engine can run on the mixture without damaging the engine.[6] Some vehicles that currently use E85 fuel, also called flex fuel, include, the Ford Focus, Dodge Durango, and Toyota Tundra, among others.[citation needed]

The future use of corn ethanol as a main

EROI closer to that of oil. Another serious problem with corn ethanol as a replacement for gasoline, is the engine damage on standard vehicles. E10 contains ten percent ethanol and is acceptable for most vehicles on the road today, while E15 contains fifteen percent ethanol and is usually prohibited for cars built before 2001.[5] However, with the hope to replace gasoline in the future, E85, which contains 85% ethanol, requires engine modification before an engine can last while processing a high volume of ethanol for an extended period of time. Therefore, most older and modern day vehicles would become obsolete without proper engine modifications to handle the increase in corrosiveness from the high volume of ethanol. Also, most gas stations do not offer refueling of E85 vehicles. The United States Department of Energy reports that only 3,355 gas stations, out of 168,000, across the United States, offer ethanol refueling for E85 vehicles.[8]

Production process

An ethanol fuel plant in West Burlington, Iowa.

There are two main types of corn ethanol production:

wet milling, which differ in the initial grain treatment method and co-products.[9]

Dry milling

The vast majority (≈80%) of corn ethanol in the United States is produced by

]

Wet milling

In wet milling, the corn grain is separated into components by steeping in dilute sulfuric acid for 24 to 48 hours.[13] The slurry mix then goes through a series of grinders to separate out the corn germ. The remaining components of fiber, gluten, and starch are segregated using screen, hydroclonic, and centrifugal separators. The corn starch and remaining water can be fermented into ethanol through a similar process as dry milling, dried and sold as modified corn starch, or made into corn syrup. The gluten protein and steeping liquor are dried to make a corn gluten meal that is sold to the livestock industry. The heavy steep water is also sold as a feed ingredient and used as an alternative to salt in the winter months. Corn oil is also extracted and sold.[citation needed]

Environmental issues

Corn ethanol results in lower

full life cycle of ethanol production.[15][16][17][18][19][20][21][22][23][24]

Greenhouse gas emissions

Ethanol-blended fuels currently in the market – whether E10 or E85 – meet stringent tailpipe emission standards.[14]

Croplands

Corn vs Ethanol production in the United States
  Total corn production (bushels) (left)
  Corn used for Ethanol fuel (bushels) (left)
  Percent of corn used for Ethanol (right)

One of the main controversies involving corn ethanol production is the necessity for arable cropland to grow the corn for ethanol, which is then not available to grow corn for human or animal consumption.[29] In the United States, 40% of the acreage designated for corn grain is used for corn ethanol production, of which 25% was converted to ethanol after accounting for co-products, leaving only 60% of the crop yield for human or animal consumption.[30]

Economic impact of corn ethanol

The Renewable Fuels Association (RFA), the ethanol industry's lobbying group, claims that ethanol production increases the price of corn by increasing demand. The RFA claims that ethanol production has positive economic effect for US farmers, but it does not elaborate on the effect for other populations where field corn is part of the staple diet. An RFA lobby document states that "In a January 2007 statement, the USDA Chief Economist stated that farm program payments were expected to be reduced by some $6 billion due to the higher value of a bushel of corn.[31] Corn production in 2009 reached over 13.2 billion bushels, and a per acre yield jumped to over 165 bushels per acre.[32] In the United States, 5.05 billion bushels of corn were used for

USDA data.[33] According to the U.S. Department of Energy's Alternative Fuels Data Center, "The increased ethanol [production] seems to have come from the increase in overall corn production and a small decrease in corn used for animal feed and other residual uses. The amount of corn used for other uses, including human consumption, has stayed fairly consistent from year to year."[33]
This does not prove there was not an impact on food supplies: Since U.S. corn production doubled (approximately) between 1987 and 2018, it is probable that some cropland previously used to grow other food crops is now used to grow corn. It is also possible or probable that some marginal land has been converted or returned to agricultural use. That may have negative environmental impacts.[citation needed]

Alternative biomass for ethanol

Remnants from food production such as

well-to-wheel carbon dioxide. The use of cellulosic biomass to produce ethanol is considered second generation biofuel that are considered by some to be a solution to the food versus fuel debate, and has the potential to cut life cycle greenhouse gas emissions by up to 86 percent relative to gasoline.[14]

See also

References

  1. OCLC 955778608
    .
  2. ^ Conca, James. "It's Final -- Corn Ethanol Is of No Use". Forbes. Retrieved 1 April 2019.
  3. ^ "USDA ERS – Feedgrains Sector at a Glance". ers.usda.gov. Retrieved 15 December 2022.
  4. ^ "Alternative Fuels Data Center: Maps and Data – U.S. Corn for Fuel Ethanol, Feed and Other Use". afdc.energy.gov. Retrieved 16 April 2019.
  5. ^ a b c "Alternative Fuels Data Center: Ethanol Fuel Basics". afdc.energy.gov. Retrieved 16 April 2019.
  6. ^ a b "Corn Ethanol Use in the Midwest". large.stanford.edu. Retrieved 16 April 2019.
  7. .
  8. ^ "Alternative Fuels Data Center: Ethanol Fueling Station Locations". afdc.energy.gov. Retrieved 16 April 2019.
  9. S2CID 10019321
    .
  10. ^ Ethanol Production and Distribution, Alternative Fuels Data Center, US Dept of Energy <http://www.afdc.energy.gov/fuels/ethanol_production.html>
  11. ^ Verser, D. W.; Eggeman, T. J. Process for producing ethanol from corn dry milling. US7888082B2. https://patents.google.com/patent/US7888082B2/en
  12. ^ Section, Government of Alberta, Alberta Agriculture and Forestry, Livestock and Crops Division, Crop Research and Extension Branch, Livestock and Crop Research Extension (1 November 2011). "Feeding Distillers Dried Grains with Solubles (DDGS) to Pigs". www1.agric.gov.ab.ca. Retrieved 23 November 2018.{{cite web}}: CS1 maint: multiple names: authors list (link)
  13. PMID 15918293
  14. ^ a b c d Ethanol Myths and Facts Archived 15 December 2010 at the Wayback Machine
  15. ^ "Biofuels: The Promise and the Risks, in World Development Report 2008" (PDF). The World Bank. 2008. pp. 70–71. Retrieved 4 May 2008.
  16. S2CID 52810681
    . Originally published online in Science Express on 7 February 2008. See Letters to Science by Wang and Haq. There are critics to these findings for assuming a worst-case scenario.
  17. ^ "Another Inconvenient Truth" (PDF). Oxfam. 28 June 2008. Archived from the original (PDF) on 19 August 2008. Retrieved 6 August 2008.Oxfam Briefing Paper 114, figure 2 pp.8
  18. S2CID 206510225
    . Originally published online in Science Express on 7 February 2008. There are rebuttals to these findings for assuming a worst-case scenario.
  19. ^ "Proposed Regulation to Implement the Low Carbon Fuel Standard. Volume I: Staff Report: Initial Statement of Reasons" (PDF). California Air Resources Board. 5 March 2009. Retrieved 26 April 2009.
  20. ^ Youngquist, W. Geodestinies, National Book company, Portland, OR, 499p.
  21. ^ "The dirty truth about biofuels". Archived from the original on 4 December 2009. Retrieved 30 July 2010.
  22. ^ Deforestation diesel – the madness of biofuel
  23. ]
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. . Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization.
  31. ^ "Ethanol Facts: Agriculture". ethanolrfa.org. 12 January 2010. Retrieved 4 April 2010.
  32. ^ "2009 Crop Year is One for the Record Books, USDA Reports". Nass.usda.gov. 12 January 2010. Archived from the original on 14 January 2010. Retrieved 4 April 2010.
  33. ^ a b "Alternative Fuels Data Center: Maps and Data – Corn Production and Portion Used for Fuel Ethanol". afdc.energy.gov. Retrieved 29 August 2019.

External links