Deformation (volcanology)

Source: Wikipedia, the free encyclopedia.
Summit inflation at Mauna Loa, as indicated by GPS measurements between June 2004 and April 2005.
A cryptodome developed on the north side of Mount St. Helens prior to its 1980 eruption as magma pushed up within the peak.

In

thermal contraction, phase changes during crystallization, and tectonic extension.[1] Deformation is a key indicator of pre-eruptive unrest at many active volcanoes.[2] The term bradyseism is used in the volcanological literature to mean the vertical ground movements associated with the Phlegraean Fields volcanic area west of Naples, Italy.[3]

Ground

cryptodome.[5] Although deformation is frequently related to subsurface magmatic movements, other processes may contribute as well. This is particularly true for subglacial volcanoes, which may undergo inflation or deflation due to size variations of the overlying ice cap. An example of this phenomenon has been demonstrated for Katla, an active volcano under Mýrdalsjökull in the south of Iceland.[6]

InSAR are the primary methods used to track ground movement. GPS measurements can be used to estimate the location and amount of magma accumulating beneath the surface. For example, the Hawaiian volcano Mauna Loa has experienced multiple episodes of inflation since its 1984 eruption, and it has been well documented since the mid-1990s. Ground tilt is continuously recorded with electronic tiltmeters installed in drill holes about 4 m (13 ft) beneath the ground surface—a location that insulates the instruments from the effects of environmental (temperature and wind) and cultural noise. Rapid changes in tilt are usually detected in the hours to days before an intrusion or eruption. InSAR uses radar images of the ground that are collected by airplanes or orbiting satellites to make maps of ground deformation. The Group on Earth Observations' "Supersite" initiative identified Hawaii as a critical site for regular monitoring, so more satellite InSAR data are available for Kīlauea and Mauna Loa volcanoes than for any other volcano on Earth. Because InSAR detects deformation over broad areas, it is an excellent tool for mapping both large- and small-scale changes.[4]

References