ERM protein family

Source: Wikipedia, the free encyclopedia.
Ezrin/radixin/moesin family
SCOP2
1ef1 / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB1ef1​, 1e5w​, 1sgh

The ERM protein family consists of three closely related proteins, ezrin,[2] radixin[3] and moesin.[4][5] The three paralogs, ezrin, radixin and moesin, are present in vertebrates, whereas other species have only one ERM gene. Therefore, in vertebrates these paralogs likely arose by gene duplication.[6]

ERM proteins are highly conserved throughout evolution. More than 75% identity is observed in the N-terminal and the C-terminal of vertebrates (ezrin, radixin, moesin), Drosophila (dmoesin) and C. elegans (ERM-1) homologs.[7]

Structure

ERM molecules contain the following three domains:[5]

Ezrin, radixin and moesin also contain a polyproline region between the central helical and C-terminal domains.

Function

ERM proteins crosslink

plasma membranes. They co-localize with CD44 at actin filament-plasma membrane interaction sites, associating with CD44 via their N-terminal domains and with actin filaments via their C-terminal domains.[5][8]

The ERM protein moesin directly binds to microtubules via its N-terminal FERM domain in vitro and stabilizes microtubules at the cell cortex in vivo. This interaction is required for specific ERM-dependent functions in mitosis.[9]

Activation

ERM proteins are highly regulated proteins. They exist in two forms:[6][7]

  • the FERM domain is able to interact with the F-actin binding site and this head-to-tail interaction maintains ERM proteins into a folded form; in this state, ERM proteins are inactive for the folding prevents either integral protein binding, or actin-binding.
  • if this head-to-tail interaction is disrupted, ERM proteins unfold, leading to an open and active conformation.

In culture cells, ERM proteins mainly exhibit the folded conformation (about 80-85%[10]).

The current model for ERM protein activation is a two-step mechanism:[11]

  • First, phosphatidylinositol 4,5-bisphosphate interaction at the plasma membrane induces a pre-opening of the ERM molecule.
  • Then, a not yet identified kinase phosphorylates a threonine localized in a highly conserved region of the C-terminal domain. The phosphate will stabilize the opening of the molecule.

References