Exterior derivative

Source: Wikipedia, the free encyclopedia.

On a

Gauss's theorem, and Green's theorem
from vector calculus.

If a differential k-form is thought of as measuring the flux through an infinitesimal k-parallelotope at each point of the manifold, then its exterior derivative can be thought of as measuring the net flux through the boundary of a (k + 1)-parallelotope at each point.

Definition

The exterior derivative of a differential form of degree k (also differential k-form, or just k-form for brevity here) is a differential form of degree k + 1.

If f is a

1-form such that for every smooth vector field X, df (X) = dXf, where dXf is the directional derivative
of f in the direction of X.

The exterior product of differential forms (denoted with the same symbol ) is defined as their

exterior product
.

There are a variety of equivalent definitions of the exterior derivative of a general k-form.

In terms of axioms

The exterior derivative is defined to be the unique -linear mapping from k-forms to (k + 1)-forms that has the following properties:

  1. df is the differential of f for a 0-form f.
  2. d(df ) = 0 for a 0-form f.
  3. d(αβ) = β + (−1)p (α) where α is a p-form. That is to say, d is an
    antiderivation of degree 1 on the exterior algebra of differential forms (see the graded product rule
    ).

The second defining property holds in more generality: d() = 0 for any k-form α; more succinctly, d2 = 0. The third defining property implies as a special case that if f is a function and α is a k-form, then d( ) = d( fα) = df  ∧ α +  f  ∧ because a function is a 0-form, and scalar multiplication and the exterior product are equivalent when one of the arguments is a scalar.[citation needed]

In terms of local coordinates

Alternatively, one can work entirely in a

multi-index
I = (i1, ..., ik) with 1 ≤ ipn for 1 ≤ pk (and denoting dxi1 ∧ ... ∧ dxik with dxI), the exterior derivative of a (simple) k-form

over n is defined as

(using the

linearly
to a general k-form

where each of the components of the multi-index I run over all the values in {1, ..., n}. Note that whenever i equals one of the components of the multi-index I then dxidxI = 0 (see

Exterior product
).

The definition of the exterior derivative in local coordinates follows from the preceding definition in terms of axioms. Indeed, with the k-form φ as defined above,

Here, we have interpreted g as a 0-form, and then applied the properties of the exterior derivative.

This result extends directly to the general k-form ω as

In particular, for a 1-form ω, the components of in

local coordinates
are

Caution: There are two conventions regarding the meaning of . Most current authors[citation needed] have the convention that

while in older text like Kobayashi and Nomizu or Helgason

In terms of invariant formula

Alternatively, an explicit formula can be given [1] for the exterior derivative of a k-form ω, when paired with k + 1 arbitrary smooth vector fields V0, V1, ..., Vk:

where [Vi, Vj] denotes the Lie bracket and a hat denotes the omission of that element:

In particular, when ω is a 1-form we have that (X, Y) = dX(ω(Y)) − dY(ω(X)) − ω([X, Y]).

Note: With the conventions of e.g., Kobayashi–Nomizu and Helgason the formula differs by a factor of 1/k + 1:

Examples

Example 1. Consider σ = udx1dx2 over a 1-form basis dx1, ..., dxn for a scalar field u. The exterior derivative is:

The last formula, where summation starts at i = 3, follows easily from the properties of the

exterior product
. Namely, dxidxi = 0.

Example 2. Let σ = udx + vdy be a 1-form defined over 2. By applying the above formula to each term (consider x1 = x and x2 = y) we have the sum

Stokes' theorem on manifolds

If M is a compact smooth orientable n-dimensional manifold with boundary, and ω is an (n − 1)-form on M, then

the generalized form of Stokes' theorem
states that

Intuitively, if one thinks of M as being divided into infinitesimal regions, and one adds the flux through the boundaries of all the regions, the interior boundaries all cancel out, leaving the total flux through the boundary of M.

Further properties

Closed and exact forms

A k-form ω is called closed if = 0; closed forms are the kernel of d. ω is called exact if ω = for some (k − 1)-form α; exact forms are the image of d. Because d2 = 0, every exact form is closed. The Poincaré lemma states that in a contractible region, the converse is true.

de Rham cohomology

Because the exterior derivative d has the property that d2 = 0, it can be used as the

smooth manifolds, integration of forms gives a natural homomorphism from the de Rham cohomology to the singular cohomology over . The theorem of de Rham shows that this map is actually an isomorphism, a far-reaching generalization of the Poincaré lemma. As suggested by the generalized Stokes' theorem, the exterior derivative is the "dual" of the boundary map
on singular simplices.

Naturality

The exterior derivative is natural in the technical sense: if f : MN is a smooth map and Ωk is the contravariant smooth functor that assigns to each manifold the space of k-forms on the manifold, then the following diagram commutes

so d( fω) =  f, where f denotes the pullback of f. This follows from that fω(·), by definition, is ω( f(·)), f being the pushforward of f. Thus d is a natural transformation from Ωk to Ωk+1.

Exterior derivative in vector calculus

Most vector calculus operators are special cases of, or have close relationships to, the notion of exterior differentiation.

Gradient

A

smooth function
f : M → ℝ on a real differentiable manifold M is a 0-form. The exterior derivative of this 0-form is the 1-form df.

When an inner product ⟨·,·⟩ is defined, the gradient f of a function f is defined as the unique vector in V such that its inner product with any element of V is the directional derivative of f along the vector, that is such that

That is,

where denotes the musical isomorphism  : VV mentioned earlier that is induced by the inner product.

The 1-form df is a section of the cotangent bundle, that gives a local linear approximation to f in the cotangent space at each point.

Divergence

A vector field V = (v1, v2, ..., vn) on n has a corresponding (n − 1)-form

where denotes the omission of that element.

(For instance, when n = 3, i.e. in three-dimensional space, the 2-form ωV is locally the

scalar triple product with V.) The integral of ωV over a hypersurface is the flux
of V over that hypersurface.

The exterior derivative of this (n − 1)-form is the n-form

Curl

A vector field V on n also has a corresponding 1-form

Locally, ηV is the

work
done against V along that path.

When n = 3, in three-dimensional space, the exterior derivative of the 1-form ηV is the 2-form

Invariant formulations of operators in vector calculus

The standard vector calculus operators can be generalized for any pseudo-Riemannian manifold, and written in coordinate-free notation as follows:

where is the

Hodge star operator, and are the musical isomorphisms, f is a scalar field and F is a vector field
.

Note that the expression for curl requires to act on d(F), which is a form of degree n − 2. A natural generalization of to k-forms of arbitrary degree allows this expression to make sense for any n.

See also

Notes

  1. ^ Spivak(1970), p 7-18, Th. 13

References

External links