FIFO (computing and electronics)

Source: Wikipedia, the free encyclopedia.
Representation of a FIFO queue

In computing and in

queue
, is processed first.

Such processing is analogous to servicing people in a

first-come, first-served
(FCFS) basis, i.e. in the same sequence in which they arrive at the queue's tail.

FCFS is also the

data structures
, as well as interactions between strict-FIFO queues.

Computer science

Representation of a FIFO queue with enqueue and dequeue operations.

Depending on the application, a FIFO could be implemented as a hardware shift register, or using different memory structures, typically a

thread safe
and require a locking mechanism to verify the data structure chain is being manipulated by only one thread at a time.

The following code shows a linked list FIFO C++ language implementation. In practice, a number of list implementations exist, including popular Unix systems C sys/queue.h macros or the C++ standard library std::list template, avoiding the need for implementing the data structure from scratch.

#include <memory>
#include <stdexcept>

using namespace std;

template <typename T>
class FIFO {
    struct Node {
        T value;
        shared_ptr<Node> next = nullptr;

        Node(T _value): value(_value) {}
    };

    shared_ptr<Node> front = nullptr;
    shared_ptr<Node> back  = nullptr;

public:
    void enqueue(T _value) {
        if (front == nullptr) {
            front = make_shared<Node>(_value);
            back = front;
        } else {
            back->next = make_shared<Node>(_value);
            back = back->next;
        }
    }

    T dequeue() {
        if (front == nullptr)
            throw underflow_error("Nothing to dequeue");

        T value = front->value;
        front = move(front->next);
        
        return value;
    }
};

In computing environments that support the

interprocess communication, a FIFO is another name for a named pipe
.

Disk controllers can use the FIFO as a disk scheduling algorithm to determine the order in which to service disk I/O requests, where it is also known by the same FCFS initialism as for CPU scheduling mentioned before.[1]

Communication

routers used in computer networks use FIFOs to hold data packets in route to their next destination. Typically at least one FIFO structure is used per network connection. Some devices feature multiple FIFOs for simultaneously and independently queuing different types of information.[3]

Electronics

A FIFO schedule

FIFOs are commonly used in

static random access memory (SRAM), flip-flops
, latches or any other suitable form of storage. For FIFOs of non-trivial size, a dual-port SRAM is usually used, where one port is dedicated to writing and the other to reading.

The first known FIFO implemented in electronics was by Peter Alfke in 1969 at Fairchild Semiconductor.[4] Alfke was later a director at Xilinx.

Synchronicity

A synchronous FIFO is a FIFO where the same clock is used for both reading and writing. An asynchronous FIFO uses different clocks for reading and writing and they can introduce metastability issues. A common implementation of an asynchronous FIFO uses a Gray code (or any unit distance code) for the read and write pointers to ensure reliable flag generation. One further note concerning flag generation is that one must necessarily use pointer arithmetic to generate flags for asynchronous FIFO implementations. Conversely, one may use either a leaky bucket approach or pointer arithmetic to generate flags in synchronous FIFO implementations.

A hardware FIFO is used for synchronization purposes. It is often implemented as a

circular queue, and thus has two pointers
:

  • Read pointer / read address register
  • Write pointer / write address register

Status flags

Examples of FIFO status flags include: full, empty, almost full, and almost empty. A FIFO is empty when the read

address register
reaches the write address register. A FIFO is full when the write address register reaches the read address register. Read and write addresses are initially both at the first memory location and the FIFO queue is empty.

In both cases, the read and write addresses end up being equal. To distinguish between the two situations, a simple and robust solution is to add one extra bit for each read and write address which is inverted each time the address wraps. With this set up, the disambiguation conditions are:

  • When the read address register equals the write address register, the FIFO is empty.
  • When the read and write address registers differ only in the extra most significant bit and the rest are equal, the FIFO is full.

See also

References

External links