Firoozbakht's conjecture

Source: Wikipedia, the free encyclopedia.
Prime gap function

In number theory, Firoozbakht's conjecture (or the Firoozbakht conjecture[1][2]) is a conjecture about the distribution of prime numbers. It is named after the Iranian mathematician Farideh Firoozbakht who stated it first in 1982.

The conjecture states that (where is the nth prime) is a strictly decreasing function of n, i.e.,

Equivalently:

see OEISA182134, OEISA246782.

By using a table of

maximal gaps, Farideh Firoozbakht verified her conjecture up to 4.444×1012.[2] Now with more extensive tables of maximal gaps, the conjecture has been verified for all primes below 2641.84×1019.[3][4]

If the conjecture were true, then the prime gap function would satisfy:[5]

Moreover:[6]

see also OEISA111943. This is among the strongest upper bounds conjectured for prime gaps, even somewhat stronger than the Cramér and Shanks conjectures.[4] It implies a strong form of Cramér's conjecture and is hence inconsistent with the heuristics of Granville and Pintz[7][8][9] and of Maier[10][11] which suggest that

occurs infinitely often for any where denotes the

Euler–Mascheroni constant
.

Two related conjectures (see the comments of OEISA182514) are

which is weaker, and

which is stronger.

See also

Notes

References