Gossypol

Source: Wikipedia, the free encyclopedia.
Gossypol
Names
Preferred IUPAC name
1,1′,6,6′,7,7′-Hexahydroxy-3,3′-dimethyl-5,5′-di(propan-2-yl)[2,2′-binaphthalene]-8,8′-dicarbaldehyde
Identifiers
3D model (
JSmol
)
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard
100.164.654 Edit this at Wikidata
IUPHAR/BPS
KEGG
UNII
  • InChI=1S/C30H30O8/c1-11(2)19-15-7-13(5)21(27(35)23(15)17(9-31)25(33)29(19)37)22-14(6)8-16-20(12(3)4)30(38)26(34)18(10-32)24(16)28(22)36/h7-12,33-38H,1-6H3 checkY
    Key: QBKSWRVVCFFDOT-UHFFFAOYSA-N checkY
  • InChI=1/C30H30O8/c1-11(2)19-15-7-13(5)21(27(35)23(15)17(9-31)25(33)29(19)37)22-14(6)8-16-20(12(3)4)30(38)26(34)18(10-32)24(16)28(22)36/h7-12,33-38H,1-6H3
    Key: QBKSWRVVCFFDOT-UHFFFAOYAH
  • CC(C)c1c(O)c(O)c(C=O)c2c1cc(C)c(c2O)-c(c3O)c(C)cc4c3c(C=O)c(O)c(O)c4C(C)C
Properties
C30H30O8
Molar mass 518.562 g·mol−1
Appearance Brown solid
Density 1.4 g/mL
Melting point 177 to 182 °C (351 to 360 °F; 450 to 455 K) (decomposes)
Boiling point 707 °C (1,305 °F; 980 K)
Hazards
GHS labelling:
GHS07: Exclamation mark
Warning
H351
P201, P202, P281, P308+P313, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Gossypol (

natural phenol derived from the cotton plant (genus Gossypium). Gossypol is a phenolic aldehyde that permeates cells and acts as an inhibitor for several dehydrogenase enzymes. It is a yellow pigment. The structure exhibits atropisomerism, with the two enantiomers having different biochemical properties.[1]

Among other applications, it has been tested as a

antimalarial properties.[2]

Biosynthesis

Gossypol is a

(+)-δ-cadinene (2) is involved in making the basic aromatic sesquiterpene unit, homigossypol, by oxidation, which generates the 3 (8-hydroxy-δ-cadinene) with the help of (+)-δ-cadinene 8-hyroxylase. Compound 3 goes through various oxidative processes to make 4 (deoxyhemigossypol), which is oxidized by one electron into hemigossypol (5, 6, 7) and then undergoes a phenolic oxidative coupling, ortho to the phenol groups, to form gossypol (8).[5] The coupling is catalyzed by a hydrogen peroxide-dependent peroxidase enzyme, which results in the final product.[5]

Research

Contraception

A 1929 investigation in Jiangxi showed correlation between low fertility in males and use of crude cottonseed oil for cooking. The compound causing the contraceptive effect was determined to be gossypol.[6] In the 1970s, the

contraceptive
. Their studies involved over 10,000 subjects, and continued for over a decade. They concluded that gossypol provided reliable contraception, could be taken orally as a tablet, and did not upset men's balance of hormones.

However, gossypol also had serious flaws. The studies also discovered an abnormally high rate (0.75%) of

digestive systems,[6] about 12% had increased fatigue, some subjects experienced impotence or reduced libido, and 9.9% became irreversibly infertile, apparently associated with longer treatment and greater total dose of gossypol.[6] Most subjects recovered after stopping treatment and taking potassium supplements. The same study showed taking potassium supplements during gossypol treatment did not prevent hypokalemia in primates.[7] The potassium deficiency may also be a result of the Chinese diet or genetic predisposition.[7]

In the mid-1990s, the Brazilian pharmaceutical company Hebron announced plans to market a low-dose gossypol pill called Nofertil, but the pill never came to market. Its release was indefinitely postponed due to unacceptably high rates of permanent infertility.[

azoospermic up to a year after stopping treatment.[7]

Researchers have suggested gossypol might make a good noninvasive alternative to surgical vasectomy.[8]

In 1986, in conjunction with the Chinese Ministry of Public Health and the

therapeutic window
. This report effectively ended further studies of gossypol as a temporary contraceptive, but research into using it as an alternative to vasectomy continues in Austria, Brazil, Chile, China, the Dominican Republic, and Nigeria.

Toxicity

Food and animal agricultural industries must manage cotton-derivative product levels to avoid toxicity. For example, only

microflora can digest gossypol, and then only to a certain level, and cottonseed oil must be refined. Genetically engineered cotton plants that contain little gossypol in the seed may still contain the compound in the stems and leaves.[10]

References

External links

  • Media related to Gossypol at Wikimedia Commons