Hypertrophic cardiomyopathy screening

Source: Wikipedia, the free encyclopedia.
Hypertrophic cardiomyopathy screening
Listening to the heart: part of screening
PurposeDetect and prevent sudden cardiac death, reduce complications of hypertrophic cardiomyopathy[1]

Hypertrophic cardiomyopathy screening is an assessment and testing to detect hypertrophic cardiomyopathy (HCM).[1][2]

It is a way of identifying HCM in immediate relatives of family members diagnosed with HCM, and

athletes as part of a sports medical.[3] It aims to detect HCM early, so that interventions can be commenced to prevent complications and sudden cardiac death.[4]

Purpose

HCM is a

athletes as part of a sports medical.[2] Additional tests may also be performed in those who faint or have exertional chest pain.[2] It aims to detect HCM early, so that interventions can be commenced to prevent complications and sudden cardiac death.[1][4]
The purpose of screening is to increase the chances of an early diagnosis and thus a better prognosis. Early diagnosis facilitates surveillance for disease complications that may become fatal if left unmanaged. Screening and therefore diagnosing at an early age allows a patient to receive the appropriate therapies (medication for symptoms, ICD implantation, or myectomy) which in turn will improve the quality and length of life. Without appropriate therapies, the progression of familial HCM during childhood can lead to increased complications at an earlier stage of life. [6]

Screening

Generally, screening may be considered for anyone of any age with a family history of HCM or sudden death.

cardiac MRI.[4]

The American Heart Association have developed a 14-point evaluation for competitive athletes, which it recommends for screening healthy teenagers and young adults.[4]

  • Flight medical: listening of the chest
    Flight medical: listening of the chest
  • ECG of an athlete
    ECG of an athlete
  • Child having echocardiogram
    Child having echocardiogram

Pre-participation Screening

In a few well-trained athletes, the normal 10% to 20% increase in left ventricular wall thickness may make it less easy to differentiate an

12-lead ECG typically shows T wave inversion, ST depression and prominent Q waves, unlike the isolated LVH signs of a normal athletic heart.[4] The ventricular cavity in athletes may also be 10% to 15% greater than in comparable non-athletes.[3]

Particularly for black athletes, some of their ECG characteristics are more likely to cross over with those seen in HCM.

wrongly reassured or even incorrectly diagnosed with HCM leading to being unfairly disqualified.[3] Limited studies mean it is unclear what structural adaptations occur in the hearts of other ethnicities.[3] Limited literature on screening Arab and African male athletes shows a high false positive rate; that is the tests indicate they have the disease when they don't.[8]

Physical Exam Findings

There are some physical exam findings that can alert you to look further for HCM. Though some patients can be asymptomatic, it is helpful to associate certain findings with a greater chance of HCM being present. The murmur heard in HCM (or HOCM, if obstructive) is a systolic ejection crescendo-decrescendo murmur. The intensity of this murmur can vary based on the degree of obstruction. This murmur can also change in intensity based on different maneuvers that can be accomplished with the body. The murmur will decrease with maneuvers that cause an increase in preload, such as squatting. It will also decrease with maneuvers that increase afterload, such as hand grip. Conversely, the murmur will increase with maneuvers that decrease preload, such as Valsalva, giving diuretics, and standing. A holosystolic murmur heard at the apex or axilla can indicate mitral regurgitation, which can be found in patients with HCM. Other physical exam findings that may be present are a jugular venous pulse with a prominent A wave, an S4 heart sound, and split second heart sounds with severe disease and prominent outflow tract obstruction. [9]

Global variation

HCM has traditionally been of greater interest in Europe, North America, Japan, Israel, and Australia.[10]

Research directions

As of 2020, research on heart adaptations in females, teenagers and Asian populations is required.[3]

References

  1. ^
    S2CID 238217008
    .
  2. ^ .
  3. ^ .
  4. ^ .
  5. ^ .
  6. ^ Norrish G, Jager J, Field E, Quinn E, Fell H, Lord E, Cicerchia MN, Ochoa JP, Cervi E, Elliott PM, Kaski JP. Yield of Clinical Screening for Hypertrophic Cardiomyopathy in Child First-Degree Relatives. Circulation. 2019 Jul 16;140(3):184-192. doi: 10.1161/CIRCULATIONAHA.118.038846. Epub 2019 Apr 22. PMID: 31006259; PMCID: PMC6636798.
  7. PMID 35813032
    .
  8. .
  9. ^ Raj MA, Ranka S, Goyal A. Hypertrophic Obstructive Cardiomyopathy. [Updated 2022 Oct 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430820/
  10. PMID 25038775
    .