Noncommutative ring
Algebraic structure → Ring theory Ring theory |
---|
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring.
Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings.
Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative. Generally, this is for emphasizing that the studied properties are not restricted to commutative rings, as, in many contexts, ring is used as a shorthand for commutative ring.
Although some authors do not assume that rings have a multiplicative identity, in this article we make that assumption unless stated otherwise.
Examples
Some examples of noncommutative rings:
- The matrix ring of n-by-n matrices over the real numbers, where n > 1
- Hamilton's quaternions
- Any group ring constructed from a group that is not abelian
Some examples of rings that are not typically commutative (but may be commutative in simple cases):
- The free ringgenerated by a finite set, an example of two non-equal elements being
- The Weyl algebra , being the ring of polynomial differential operators defined over affine space; for example, , where the ideal corresponds to the commutator
- The quotient ring , called a quantum plane, where
- Any Clifford algebra can be described explicitly using an algebra presentation: given an -vector space of dimension n with a quadratic form , the associated Clifford algebra has the presentation for any basis of ,
- Superalgebras are another example of noncommutative rings; they can be presented as
- There are finite noncommutative rings: for example, the n-by-n matrices over a
History
Beginning with
and others.Differences between commutative and noncommutative algebra
Because noncommutative rings of scientific interest are more complicated than commutative rings, their structure, properties and behavior are less well understood. A great deal of work has been done successfully generalizing some results from commutative rings to noncommutative rings. A major difference between rings which are and are not commutative is the necessity to separately consider
Important classes
Division rings
A division ring, also called a skew field, is a
Division rings differ from
Semisimple rings
A module over a (not necessarily commutative) ring with unity is said to be semisimple (or completely reducible) if it is the direct sum of simple (irreducible) submodules.
A ring is said to be (left)-semisimple if it is semisimple as a left module over itself. Surprisingly, a left-semisimple ring is also right-semisimple and vice versa. The left/right distinction is therefore unnecessary.
Semiprimitive rings
A semiprimitive ring or Jacobson semisimple ring or J-semisimple ring is a ring whose
Simple rings
A simple ring is a non-zero
According to the
Any quotient of a ring by a maximal ideal is a simple ring. In particular, a field is a simple ring. A ring R is simple if and only if its opposite ring Ro is simple.
An example of a simple ring that is not a matrix ring over a division ring is the Weyl algebra.
Important theorems
Wedderburn's little theorem
Wedderburn's little theorem states that every finite domain is a field. In other words, for finite rings, there is no distinction between domains, division rings and fields.
The
Artin–Wedderburn theorem
The Artin–Wedderburn theorem is a
As a direct corollary, the Artin–Wedderburn theorem implies that every simple ring that is finite-dimensional over a division ring (a simple algebra) is a matrix ring. This is Joseph Wedderburn's original result. Emil Artin later generalized it to the case of Artinian rings.
Jacobson density theorem
The Jacobson density theorem is a theorem concerning simple modules over a ring R.[6]
The theorem can be applied to show that any
More formally, the theorem can be stated as follows:
- The Jacobson Density Theorem. Let U be a simple right R-module, D = End(UR), and X ⊂ U a finite and D-linearly independent set. If A is a D-linear transformation on U then there exists r ∈ R such that A(x) = x · r for all x in X.[10]
Nakayama's lemma
Let J(R) be the Jacobson radical of R. If U is a right module over a ring, R, and I is a right ideal in R, then define U·I to be the set of all (finite) sums of elements of the form u·i, where · is simply the action of R on U. Necessarily, U·I is a submodule of U.
If V is a
Precisely, one has the following.
- Nakayama's lemma: Let U be a finitely generated right module over a ring R. If U is a non-zero module, then U·J(R) is a proper submodule of U.[14]
A version of the lemma holds for right modules over non-commutative
Noncommutative localization
Localization is a systematic method of adding multiplicative inverses to a ring, and is usually applied to commutative rings. Given a ring R and a subset S, one wants to construct some ring R* and ring homomorphism from R to R*, such that the image of S consists of units (invertible elements) in R*. Further one wants R* to be the 'best possible' or 'most general' way to do this – in the usual fashion this should be expressed by a universal property. The localization of R by S is usually denoted by S −1R; however other notations are used in some important special cases. If S is the set of the non zero elements of an integral domain, then the localization is the field of fractions and thus usually denoted Frac(R).
Localizing
One case for non-commutative rings where localization has a clear interest is for rings of differential operators. It has the interpretation, for example, of adjoining a formal inverse D−1 for a differentiation operator D. This is done in many contexts in methods for
Morita equivalence
Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958.
Two rings R and S (associative, with 1) are said to be (Morita) equivalent if there is an equivalence of the category of (left) modules over R, R-Mod, and the category of (left) modules over S, S-Mod. It can be shown that the left module categories R-Mod and S-Mod are equivalent if and only if the right module categories Mod-R and Mod-S are equivalent. Further it can be shown that any functor from R-Mod to S-Mod that yields an equivalence is automatically
Brauer group
The Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras of finite rank over K and addition is induced by the tensor product of algebras. It arose out of attempts to classify division algebras over a field and is named after the algebraist Richard Brauer. The group may also be defined in terms of Galois cohomology. More generally, the Brauer group of a scheme is defined in terms of Azumaya algebras.
Ore conditions
The Ore condition is a condition introduced by
A domain that satisfies the right Ore condition is called a right Ore domain. The left case is defined similarly.Goldie's theorem
In
Goldie's theorem states that the
In particular, Goldie's theorem applies to semiprime right
A consequence of Goldie's theorem, again due to Goldie, is that every semiprime
See also
- Derived algebraic geometry
- Noncommutative geometry
- Noncommutative algebraic geometry
- Noncommutative harmonic analysis
- Representation theory (group theory)
Notes
- ^ Sloane, N. J. A. (ed.). "Sequence A127708 (Number of non-commutative rings with 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ In this article, rings have a 1.
- Zbl 1213.51001.
- Semisimple rings are necessarily Artinian rings. Some authors use "semisimple" to mean the ring has a trivial Jacobson radical. For Artinian rings, the two notions are equivalent, so "Artinian" is included here to eliminate that ambiguity.
- ISBN 978-0-521-64407-5.
- ^ Isaacs, p. 184
- full linear rings.
- ^ Isaacs, Corollary 13.16, p. 187
- ^ Jacobson 1945
- ^ Isaacs, Theorem 13.14, p. 185
- ^ Isaacs 1993, p. 182
- ^ Isaacs 1993, p. 183
- ^ Isaacs 1993, Theorem 12.19, p. 172
- ^ a b Isaacs 1993, Theorem 13.11, p. 183
- ^ Nagata 1962, §A2
- ^ Cohn, P. M. (1991). "Chap. 9.1". Algebra. Vol. 3 (2nd ed.). p. 351.
References
- ISBN 0-534-19002-2
- JSTOR 1990204
- Wiley-Interscience
Further reading
- ISBN 0-88385-015-X
- Springer-Verlag