Zero ring

Source: Wikipedia, the free encyclopedia.

In ring theory, a branch of mathematics, the zero ring[1][2][3][4][5] or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which xy = 0 for all x and y. This article refers to the one-element ring.)

In the

initial object
.

Definition

The zero ring, denoted {0} or simply 0, consists of the one-element set {0} with the operations + and · defined such that 0 + 0 = 0 and 0 · 0 = 0.

Properties

Constructions

  • For any ring A and ideal I of A, the
    unit ideal
    .
  • For any commutative ring A and
    localization
    S−1A is the zero ring if and only if S contains 0.
  • If A is any ring, then the ring M0(A) of 0 × 0 matrices over A is the zero ring.
  • The direct product of an empty collection of rings is the zero ring.
  • The endomorphism ring of the trivial group is the zero ring.
  • The ring of continuous real-valued functions on the empty topological space is the zero ring.

Citations

  1. ^ a b Artin 1991, p. 347
  2. ^ Atiyah & Macdonald 1969, p. 1
  3. ^ Bosch 2012, p. 10
  4. ^ Bourbaki, p. 101
  5. ^ Lam 2003, p. 1
  6. ^ Lang 2002, p. 83
  7. ^ Lam 2003, p. 3
  8. ^ a b c Hartshorne 1977, p. 80

References

  • Artin, Michael (1991), Algebra, Prentice-Hall
  • Atiyah, M. F.; Macdonald, I. G. (1969), Introduction to commutative algebra, Addison-Wesley
  • Bosch, Siegfried (2012), Algebraic geometry and commutative algebra, Springer
  • Bourbaki, N., Algebra I, Chapters 1–3
  • Hartshorne, Robin (1977), Algebraic geometry, Springer
  • Lam, T. Y. (2003), Exercises in classical ring theory, Springer
  • Lang, Serge (2002), Algebra (3rd ed.), Springer