Ring homomorphism

Source: Wikipedia, the free encyclopedia.

In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if R and S are rings, then a ring homomorphism is a function f : RS such that f is:[1][2][3][4][5][6][7][a]

addition preserving:
f(a + b) = f(a) + f(b) for all a and b in R,
multiplication preserving:
f(ab) = f(a)f(b) for all a and b in R,
and unit (multiplicative identity) preserving:
f(1R) = 1S.

Additive inverses and the additive identity are part of the structure too, but it is not necessary to require explicitly that they too are respected, because these conditions are consequences of the three conditions above.

If in addition f is a bijection, then its inverse f−1 is also a ring homomorphism. In this case, f is called a ring isomorphism, and the rings R and S are called isomorphic. From the standpoint of ring theory, isomorphic rings cannot be distinguished.

If R and S are rngs, then the corresponding notion is that of a rng homomorphism,[b] defined as above except without the third condition f(1R) = 1S. A rng homomorphism between (unital) rings need not be a ring homomorphism.

The composition of two ring homomorphisms is a ring homomorphism. It follows that the class of all rings forms a category with ring homomorphisms as the morphisms (cf. the category of rings). In particular, one obtains the notions of ring endomorphism, ring isomorphism, and ring automorphism.

Properties

Let f : RS be a ring homomorphism. Then, directly from these definitions, one can deduce:

  • f(0R) = 0S.
  • f(−a) = −f(a) for all a in R.
  • For any
    unit element a in R, f(a) is a unit element such that f(a−1) = f(a)−1. In particular, f induces a group homomorphism
    from the (multiplicative) group of units of R to the (multiplicative) group of units of S (or of im(f)).
  • The image of f, denoted im(f), is a subring of S.
  • The
    ideal
    in R. Every ideal in a ring R arises from some ring homomorphism in this way.
  • The homomorphism f is injective if and only if ker(f) = {0R}.
  • The
    divides
    the characteristic of R. This can sometimes be used to show that between certain rings R and S, no ring homomorphism RS exists.
  • If Rp is the smallest subring contained in R and Sp is the smallest subring contained in S, then every ring homomorphism f : RS induces a ring homomorphism fp : RpSp.
  • If R is a
    skew-field) and S is not the zero ring
    , then f is injective.
  • If both R and S are fields, then im(f) is a subfield of S, so S can be viewed as a field extension of R.
  • If I is an ideal of S then f−1(I) is an ideal of R.
  • If R and S are commutative and P is a prime ideal of S then f−1(P) is a prime ideal of R.
  • If R and S are commutative, M is a maximal ideal of S, and f is surjective, then f−1(M) is a maximal ideal of R.
  • If R and S are commutative and S is an integral domain, then ker(f) is a prime ideal of R.
  • If R and S are commutative, S is a field, and f is surjective, then ker(f) is a maximal ideal of R.
  • If f is surjective, P is prime (maximal) ideal in R and ker(f) ⊆ P, then f(P) is prime (maximal) ideal in S.

Moreover,

Examples

Non-examples

  • The function f : Z/6ZZ/6Z defined by f([a]6) = [4a]6 is a rng homomorphism (and rng endomorphism), with kernel 3Z/6Z and image 2Z/6Z (which is isomorphic to Z/3Z).
  • There is no ring homomorphism Z/nZZ for any n ≥ 1.
  • If R and S are rings, the inclusion RR × S that sends each r to (r,0) is a rng homomorphism, but not a ring homomorphism (if S is not the zero ring), since it does not map the multiplicative identity 1 of R to the multiplicative identity (1,1) of R × S.

Category of rings

Endomorphisms, isomorphisms, and automorphisms

  • A ring endomorphism is a ring homomorphism from a ring to itself.
  • A ring isomorphism is a ring homomorphism having a 2-sided inverse that is also a ring homomorphism. One can prove that a ring homomorphism is an isomorphism if and only if it is
    bijective as a function on the underlying sets. If there exists a ring isomorphism between two rings R and S, then R and S are called isomorphic. Isomorphic rings differ only by a relabeling of elements. Example: Up to isomorphism, there are four rings of order 4. (This means that there are four pairwise non-isomorphic rings of order 4 such that every other ring of order 4 is isomorphic to one of them.) On the other hand, up to isomorphism, there are eleven rngs
    of order 4.
  • A ring automorphism is a ring isomorphism from a ring to itself.

Monomorphisms and epimorphisms

Injective ring homomorphisms are identical to monomorphisms in the category of rings: If f : RS is a monomorphism that is not injective, then it sends some r1 and r2 to the same element of S. Consider the two maps g1 and g2 from Z[x] to R that map x to r1 and r2, respectively; fg1 and fg2 are identical, but since f is a monomorphism this is impossible.

However, surjective ring homomorphisms are vastly different from

strong epimorphisms
.

See also

Notes

  1. ^ Hazewinkel initially defines "ring" without the requirement of a 1, but very soon states that from now on, all rings will have a 1.
  2. ^ Some authors use the term "ring" to refer to structures that do not require a multiplicative identity; instead of "rng", "ring", and "rng homomorphism", they use the terms "ring", "ring with identity", and "ring homomorphism", respectively. Because of this, some other authors, to avoid ambiguity, explicitly specify that rings are unital and that homomorphisms preserve the identity.

Citations

  1. ^ Artin 1991, p. 353
  2. ^ Atiyah & Macdonald 1969, p. 2
  3. ^ Bourbaki 1998, p. 102
  4. ^ Eisenbud 1995, p. 12
  5. ^ Jacobson 1985, p. 103
  6. ^ Lang 2002, p. 88
  7. ^ Hazewinkel 2004, p. 3

References

  • Artin, Michael (1991). Algebra. Englewood Cliffs, N.J.: Prentice Hall.
  • Bourbaki, N. (1998). Algebra I, Chapters 1–3. Springer.
  • .
  • .
  • .