PGAM2

Source: Wikipedia, the free encyclopedia.
PGAM2
Identifiers
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_000290

NM_018870

RefSeq (protein)

NP_000281

NP_061358

Location (UCSC)Chr 7: 44.06 – 44.07 MbChr 11: 5.75 – 5.75 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Phosphoglycerate mutase 2 (PGAM2), also known as muscle-specific phosphoglycerate mutase (PGAM-M), is a phosphoglycerate mutase that, in humans, is encoded by the PGAM2 gene on chromosome 7.[5][6]

glycolytic pathway. The PGAM is a dimeric enzyme containing, in different tissues, different proportions of a slow-migrating muscle (MM) isozyme, a fast-migrating brain (BB) isozyme, and a hybrid form (MB). This gene encodes muscle-specific PGAM subunit. Mutations in this gene cause muscle phosphoglycerate mutase deficiency, also known as glycogen storage disease X.[provided by RefSeq, Sep 2009][5]

Structure

PGAM2 is one of two genes in humans encoding a PGAM subunit, the other being

PGAM1
.

Gene

The PGAM2 gene is composed of three

5'-untranslated region of human PGAM2, though one consensus sequence has been proposed in rat and chicken.[7][8] Unlike PGAM1, which is present as several copies in the human genome, only one copy of PGAM2 is found in the genome, indicating that this gene arose from gene duplication of and subsequent modifications in the PGAM1 gene.[7]

Protein

The isozyme encoded by PGAM2 spans 253

heterodimers.[9] The MM homodimer is found primarily in adult muscle, while the MB heterodimer, composed of a subunit from each isozyme, is found in the heart.[8]

One key residue in the active site of PGAM2, lysine 100 (K100), is highly conserved across bacteria, to yeast, plant, and mammals, indicating its evolutionary importance. K100 directly contacts the substrate (3-PGA) and intermediate (2,3-PGA); however, the acetylation of this residue under normal cellular conditions neutralizes its positive charge and interferes with this binding.[9]

Mechanism

PGAM2 catalyzes the 3-PG-to-2-PG isomerization via a 2-step process:

  1. a phosphate group from the phosphohistidine in the active site is transferred to the C-2 carbon of 3-PGA to form 2,3-bisphosglycerate (2,3-PGA), and then
  2. the phosphate group linked to the C-3 carbon of 2,3-PG is transferred to the catalytic histidine to form 2-PGA and regenerate the phosphohistidine.[9]

Function

PGAM2 is one of two PGAM subunits found in humans and is predominantly expressed in adult

allosteric regulators of the pentose phosphate pathway (PPP) and glycine and serine synthesis pathways, respectively, PGAM2 may contribute to the biosynthesis of amino acids, 5-carbon sugar, and nucleotides precursors.[9]

Clinical significance

PGAM activity is upregulated in

tumor growth.[9]

In a patient with intolerance for strenuous exercise and persistent pigmenturia, PGAM2 activity was found to be decreased relative to other glycolytic enzymes.

heterozygous for the G97D mutation presented with exercise intolerance and muscle cramps.[12]

Interactions

PGAM2 is known to

interact
with:

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles.[§ 1]

[[File:
GlycolysisGluconeogenesis_WP534go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to Entrezgo to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
GlycolysisGluconeogenesis_WP534go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to Entrezgo to article
|alt=Glycolysis and Gluconeogenesis edit]]
Glycolysis and Gluconeogenesis edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534".

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000164708Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000020475Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b "Entrez Gene: PGAM2, phosphoglycerate mutase 2 (muscle)".
  6. ^ "UniProtKB: P15259".
  7. ^
    PMID 2145198
    .
  8. ^ .
  9. ^ .
  10. ^ .
  11. .
  12. ^ .

This article incorporates text from the United States National Library of Medicine ([1]), which is in the public domain.

This page is based on the copyrighted Wikipedia article: PGAM2. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy