Pentamethyltantalum

Source: Wikipedia, the free encyclopedia.
Pentamethyltantalum
Names
Systematic IUPAC name
pentamethyl-λ5-tantalane
Identifiers
3D model (
JSmol
)
  • InChI=1S/5CH3.Ta/h5*1H3;/q5*-1;+5 ☒N
    Key: GFPNFSSWCUULLCP-UHFFFAOYSA-N ☒N
  • C[Ta](C)(C)(C)C
Properties
C5H15Ta
Molar mass 256.123 g·mol−1
Appearance yellow oil, green solid at −20°
Melting point 0 °C (32 °F; 273 K)[1]
Boiling point decomposes above 25° to methane
Solubility ether, pentane, 2-methylbutane
Thermochemistry
Std enthalpy of
formation
fH298)
169.8[2] 213 kJ/mol[3]
Related compounds
Related compounds
Pentamethylarsenic
Pentamethylbismuth
Pentamethylantimony
pentabenzyltantalum
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N (what is checkY☒N ?)

Pentamethyltantalum is a homoleptic organotantalum compound. It has a propensity to explode when it is melted.[4] Its discovery was part of a sequence that led to Richard R. Schrock's Nobel Prize discovery in olefin metathesis.[5]

Production

Pentamethyltantalum can be made from the reaction of methyllithium with

tantalum pentachloride and dimethylzinc.[7]

The preparation was inspired by the existence of pentaalkyl compounds of phosphorus and arsenic, and the discovery of hexamethyltungsten. The discoverer Richard R. Schrock considered tantalum to be a metallic phosphorus, and tried the use of methyllithium.[8]

Properties

The pentamethyltantalum adopts a square pyramid shape. Ignoring the C-H bonds, the molecule has C4v symmetry. The four carbon atoms at the base of the pyramid are called basal, and the carbon atom at the top is called apical or apex. The distance from tantalum to the apical carbon atom is 2.11 Å, and to the basal carbon atoms is 2.180 Å. The distance from hydrogen to carbon in the methyl groups is 1.106 Å. The angle subtended by two basal carbon bonds is 82.2°, and the angle between the bonds to the apex and a carbon on the base is about 111.7°.[9][10]

At room temperature pentamethyltantalum can spontaneously explode, so samples are stored below 0°.[10]

Reactions

With many carbon-hydrogen bonds near Ta, analogues of pentamethyltantalum are susceptible to alpha elimination.[5]

Excess methyllithium reacts to yield higher coordinated methyl tantalum ions [Ta(CH3)6] and [Ta(CH3)7]2−.[6]

Pentamethyltantalum in solution forms stable insoluble complex material when mixed with

dmpe (CH3)2PCH2CH2P(CH3)2.[6]

With nitric oxide it gives a white coloured dimer with formula {TaMe3[ON(Me)NO]2}2 (Me=CH3).[11]

References