Prodoxidae

Source: Wikipedia, the free encyclopedia.

Prodoxidae
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Superfamily: Adeloidea
Family: Prodoxidae
Riley, 1881
Genera

Greya
Lampronia
Mesepiola
Parategeticula
Prodoxoides

Agavenema
)
Tegeticula
Tetragma

Diversity[1]
About 9 genera and 98 species

The Prodoxidae are a family of moths, generally small in size and nondescript in appearance. They include species of moderate pest status, such as the currant shoot borer, and others of considerable ecological and evolutionary interest, such as various species of "yucca moths".

Description and affinities

Lampronia corticella

Prodoxidae are a family of primitive

Prodoxoides asymmetra occurs in Chile and Argentina,[3] but all other prodoxid moth genera have a northern distribution. The enigmatic genus Tridentaforma is sometimes placed here and assumed to be close to Lampronia, while other authors consider it incertae sedis among the closely related family Adelidae
.

Yucca moths and coevolution

"Yucca moths" have a remarkable biology. They are famous for an old and intimate relationship with

eggs are deposited in fruits and leaves, where they eat and grow, not emerging until fully mature. One species of yucca moth, Tegeticula intermedia, betrays this obligate mutualism by not pollinating the yucca while still laying its eggs on the host plant, cheating the yucca out of any benefits from this relationship.[6]

Coevolution is particularly important in evolutionary biology as it demonstrates increased genetic variance between two organisms that have strong interactions, resulting in increased fitness generally for both species. In an effort to further investigate the traits that have evolved as a result of coevolution, Pellmyr and his team utilized a phylogenetic framework to observe the evolution of active pollination and specializing effects of the yucca moths which eventually lead to the loss of nectar in the genus of yucca plants, requiring them to have Prodoxidae moths around to reproduce. The moths in this case, specifically Tegeticula and Parategeticula, pollinate yucca flower purposefully, and lay their eggs in the flowers. The larvae of the moths rely on yucca seeds as nourishment and this is also cost inflicted on the plants to maintain the mutualism. After setting up a test experiment which involved pairing species of Prodoxidae with different host plants, the results have shown that moths that were able to develop a pollination-type relationship with the new plant species were more successful and would better be able to reproduce than moths that were unable to do so.[4][7]

Another study takes a look at coevolution as a primary driver of change and diversification in the yucca moth and the

Joshua tree, more commonly known as the yucca palm. The researchers tested this hypothesis by setting up a differential selection of two species of yucca moths and two corresponding species of yucca palms which they pollinate. The study showed floral traits involving pollination evolved substantially more rapidly than other flower features. The study then looks at phylogeny and determines that coevolution is the major evolutionary force behind diversification in the yucca palms when pollinated moths were present. The researchers of the Joshua tree show that setting up phylogenetic patterns using maximum likelihood techniques, can be a powerful tool to analyze the divergence in species.[8]

Researchers have again tried to demonstrate the absolute minimal level of evolution needed to secure a yucca plant and moth mutualism. The researchers attempt to find an answer as to how integral coevolution was as the driving force behind various adaptions between the yucca moth and plant species. Phylogenetic examination was also used here to reconstruct the trait evolution of the pollinating yucca moths and their non-mutualistic variants. Certain mutualistic traits have predated the yucca moth-plant mutualism, such as larval feeding in the floral ovary; however, it suggests that other key traits linked to pollination were indeed a result of coevolution between the two species. It is integral to reiterate here that key traits such as tentacular appendages which help in pollen collection and pollinating behaviors evolved as a result of coevolution during a mutualism between moths and host plants. After collecting genetic information from dozens of differing Prodoxidae moths, including ones involved in ideal mutualisms such as Tegeticula, and mapping these extracted sequences using the BayesTraits clade forming algorithm, conclusions could be drawn about trait formation that differentiated the monophylum or clade of strict obligate pollinators in the family Prodoxidae from other moths that did not undergo mutualism.[9]

References

  1. ^ van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, Minet J, et al. (2011). Zhang ZQ (ed.). "Order Lepidoptera Linnaeus, 1758" (PDF). Zootaxa. Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. 3148: 212–221.
  2. ^ "Currant Shoot Borer Lampronia capitella". UKMoths. Retrieved 2012-07-31.
  3. S2CID 86821657
    .
  4. ^ .
  5. .
  6. .
  7. .
  8. .
  9. .
  • Davis, D.R. (1999). The Monotrysian Heteroneura. Ch. 6, pp. 65–90 in Kristensen, N.P. (Ed.). Lepidoptera, Moths and Butterflies. Volume 1: Evolution, Systematics, and Biogeography. Handbuch der Zoologie. Eine Naturgeschichte der Stämme des Tierreiches / Handbook of Zoology. A Natural History of the phyla of the Animal Kingdom. Band / Volume IV Arthropoda: Insecta Teilband / Part 35: 491 pp. Walter de Gruyter, Berlin, New York.
  • Powell, J. A. (1992). Interrelationships of yuccas and yucca moths. Trends in Ecology and Evolution 7: 10–15, Britannica Online Encyclopedia.

External links