Professional video camera
This article needs additional citations for verification. (June 2012) |

A professional video camera (often called a television camera even though its use has spread beyond
The distinction between professional video cameras and movie cameras narrowed as HD digital video cameras with sensors the same size as 35mm movie cameras - plus dynamic range (exposure latitude) and color rendition approaching film quality - were introduced in the late 2010s. Nowadays, HDTV cameras designed for broadcast television, news, sports, events and other works such as reality TV are termed as professional video cameras. A digital movie camera is designed for movies or scripted television to record files that are then color corrected during post-production. The video signal from a professional video camera can be broadcast live, or is meant to be edited quickly with little or no color or exposure adjustments needed.
History
The earliest video cameras were mechanical

The first color cameras (1950s in the US, early 1960s in Europe), notably the RCA TK-40/41 series, were much more complex with their three (and in some models four) pickup tubes, and their size and weight drastically increased. Handheld color cameras did not come into general use until the early 1970s - the first generation of cameras were split into a camera head unit (the body of the camera, containing the lens and pickup tubes, and held on the shoulder or a body brace in front of the operator) connected via a cable bundle to a backpack CCU.

The
At first all these cameras used tube-based sensors, but
In the late 1990s, as HDTV broadcasting commenced, HDTV cameras suitable for news and general purpose work were introduced. Though they delivered much better image quality, their overall operation was identical to their standard definition predecessors. New methods of recording for cameras were introduced to supplant
In 2000s, major manufacturers like Sony and Philips introduced the digital professional video cameras. These cameras used CCD sensors and recorded video digitally on
Chronology

- 1926 to 1933 "cameras" were a type of flying spot scanner using a mechanical disk.
- 1936 saw the arrival of RCA's iconoscope camera.
- 1946 RCA's TK-10 studio camera used a 3" IO – Image Orthicon tube with a 4 lens turret. The RCA TK-30 (1946) was widely used as a field camera. A TK-30 is simply a TK-10 with a portable camera control unit.
- The 1948 Dumont Marconi MK IV was an Image Orthicon camera. Marconi's first camera was shown in 1938.[4] EMI cameras from the UK were used in the US in the early 1960s, like the EMI 203/4.[5] Later in the 60s the EMI 2000 and EMI 2001.
- In 1950 the arrival of the Vidiconcamera tube made smaller cameras possible. 1952 saw the first Walkie-Lookie "portable cameras". Image Orthicon tubes were still used till the arrival of the Plumbicon.
- The RCA TK-40 is considered to be the first color television camera for broadcasts in 1953. RCA continued its lead in the high-end camera market till the (1978) TK-47, last of the high-end tube cameras from RCA.[6]
- 1954 RCA's TK-11 studio camera used a 3" IO – Image Orthicon tube with a four-lens turret. The RCA TK-31 (1954) was widely used as a field camera. A TK-31 is simply a TK-11 with a portable camera control unit. There is some commonality between the TK-11/TK-31 and the earlier TK-10/TK-30.
- Ikegami introduced the first truly portable hand-held TV camera in 1962.
- Frame transfer CCD- Charge-coupled device-CCD camera the LDK90 in 1987.
- Bosch post production using a film recorder for film out.
- In the 2000s, major manufacturers like Sony and Philips introduced the flash storagebased digital television cameras. Since the 2010s, this storage system has become the most widely used.
Usage types
Most professional cameras utilize an optical
In both single sensor Bayer filter and triple sensor designs, the weak signal created by the sensors is amplified before being encoded into analog signals for use by the viewfinder and also encoded into digital signals for transmission and recording. The analog outputs were normally in the form of either a composite video signal, which combined the color and luminance information to a single output; or an R-Y B-Y Y component video output through three separate connectors.
Studio cameras
Most television studio cameras stand on the floor, usually with pneumatic or hydraulic mechanisms called pedestals to adjust the height and position in the studio. The cameras in a multiple-camera setup are controlled by a device known as a camera control unit (CCU), to which they are connected via a triax, fibre optic or the almost obsolete multicore cable. The CCU, along with genlock and other equipment, is installed in the central apparatus room (CAR) of the television studio. A remote control panel in the production control room (PCR) for each camera is then used by the vision engineer(s) to balance the pictures.
When used outside a formal television studio in outside broadcasting (OB), they are often on tripods that may or may not have wheels (depending on the model of the tripod). Initial models used analog technology, but are now obsolete, supplanted by digital models.
Studio cameras are light and small enough to be taken off the pedestal and the lens changed to a smaller size to be used handheld on a camera operator's shoulder, but they still have no recorder of their own and are cable-bound. Cameras can also be mounted on a tripod, a dolly or a crane, thus making the cameras much more versatile than previous generations of studio cameras. These cameras have a tally light, a small signal-lamp used that indicates, for the benefit of those being filmed as well as the camera operator, that the camera is 'live' – i.e. its signal is being used for the 'main program' at that moment.
ENG cameras

ENG (electronic news gathering) video cameras were originally designed for use by news camera operators. While they have some similarities to the smaller consumer camcorder, they differ in several regards:
- ENG cameras are larger and heavier (helps dampen small movements), and usually supported by a camera shoulder support or shoulder stock on the camera operator's shoulder, taking the weight off the hand, which is freed to operate the zoom lenscontrol.
- The camera mounts on tripods with Fluid heads and other supports with a quick release plate.
- 3 active pixel sensors are used, one for each of the primary colors
- They have interchangeable lenses.
- The lens is focused manually and directly, without intermediate servo controls. However the lens zoom and focus can be operated with remote controls with a television studio configuration operated by a camera control unit (CCU).
- A rotating behind-the-lens filter wheel, for selecting an 85A and neutral density filters.
- Controls that need quick access are on hard physical switches, all in the same general place on the camera, irrespective of the camera manufacturer, such as Gain Select, White/Black balance, color bar select, and record start controls and not in menu selection.
- All settings, iriscan be manually adjusted, and automatics can be completely disabled.
- Professional BNC connectors for video out and genlock in.
- Can operate an electronic viewfinder (EVF) or external CRT viewfinder.
- At least two XLR input connectors for audio are included.
- Direct slot-in for portable wireless microphones.
- Audio is adjusted manually, with easily accessed physical knobs.
- A complete time codesection is available, allowing time presets; multiple-camera setups can be time code-synchronized or jam synced to a master clock.
- "Bars and tone" are available in-camera (the SMPTE color bars (Society of Motion Picture and Television Engineers) Bars, a reference signal that simplifies calibration of monitors and setting levels when duplicating and transmitting the picture.)
- Recording is to a professional medium like some variant of video compression) are used than in consumer devices.
EFP cameras

Others
Remote cameras are typically very small camera heads designed to be operated by remote control. Despite their small size, they are often capable of performance close to that of the larger ENG and EFP types.
Block cameras are so called because the camera head is a small block, often smaller than the lens itself. Some block cameras are completely self-contained, while others only contain the sensor block and its pre-amps, thus requiring connection to a separate camera control unit in order to operate. All the functions of the camera can be controlled from a distance, and often there is a facility for controlling the lens focus and zoom as well. These cameras are mounted on pan and tilt heads, and may be placed in a stationary position, such as atop a pole or tower, in a corner of a broadcast booth, or behind a basketball hoop. They can also be placed on robotic dollies, at the end of camera booms and cranes, or "flown" in a cable supported harness, as shown in the illustration.
See also
- Akai
- Ampex
- John Logie Baird
- Broadcast Television Systems Inc. LDK Norelco- line of cameras
- Digital cinematography
- Digital cinematography cameras
- Allen B. DuMont
- Link Electronics Ltd
- Fernseh KC- line of cameras
- Film chain
- Grass Valley (company) LDK - line of cameras
- HitachiSK- line of cameras
- Ikegami HL and HK -line of cameras
- Marconi Company EMI - line of cameras
- Multiple-camera setup
- NorelcoPC line of cameras
- PAL
- Philips KD - line of cameras
- RCA TK- line of cameras
References
- ^ "HD Time Machine". HD Camera Guide. Archived from the original on 30 October 2014. Retrieved 22 September 2014.
- ^ "RCA TV Camera Section". The Broadcast Archive. Retrieved 22 September 2014.
- ^ "Thomson TTV1602 Microcam". Museum of the Broadcast Television Camera. Retrieved 22 September 2014.
- ^ "link to MK IV". chalkhillmedia.org.
- ^ "The Knacker's Yard - Studio". www.meldrum.co.uk.
- ISBN 9780786412204– via Google Books.
Bibliography
- Zettl, H. 2006 "Television Production Handbook", Thomson Wadsworth, ISBN 0-534-64727-8