Radar jamming and deception

Source: Wikipedia, the free encyclopedia.

Radar jamming and deception is a form of

noise
or false information. Concepts that blanket the radar with signals so its display cannot be read are normally known as jamming, while systems that produce confusing or contradictory signals are known as deception, but it is also common for all such systems to be referred to as jamming.

There are two general classes of radar jamming, mechanical and electronic. Mechanical jamming entails reflecting enemy radio signals in various ways to provide false or misleading target signals to the radar operator. Electronic jamming works by transmitting additional radio signals towards enemy receivers, making it difficult to detect real target signals, or take advantage of known behaviors of automated systems like radar lock-on to confuse the system.

Various counter-countermeasures can sometimes help radar operators maintain target detection despite jamming.

Mechanical jamming

Mechanical jamming is caused by devices that reflect or re-reflect radar energy back to the radar to produce false target returns on the operator's scope. Mechanical jamming devices include chaff, corner reflectors, and decoys.

  • radar cross-section
    (RCS) than the target, so the radar tracks it.
  • Corner reflectors have the same effect as chaff but are physically very different. Corner reflectors are many-sided objects that re-radiate radar energy mostly back toward its source. An aircraft cannot carry as many corner reflectors as it can chaff.
  • guided missiles
    at the decoys, thereby depleting limited stocks of expensive weaponry which might otherwise have been used against genuine targets.

Electronic jamming

German Luftwaffe Tornado ECR (Electronic Combat / Reconnaissance). This fighter specializes in electronic warfare.

Electronic jamming is a form of

electronic warfare
where jammers radiate interfering signals toward an enemy's radar, blocking the receiver with highly concentrated energy signals. The two main technique styles are noise techniques and repeater techniques. The three types of noise jamming are spot, sweep, and barrage.

  • Protective/Standoff jamming
    Protective/Standoff jamming
  • Protective/Escort jamming
    Protective/Escort jamming

Noise jamming

.[3]

Radar burn-through

Radar range, and burn-through range

The burn-through range is the distance from the radar at which the jamming is ineffective. When a target is within this range, the radar receives an adequate target skin return to track it. The burn through range is a function of the target RCS (

Radar cross-section), jamming ERP (Effective radiated power
), the radars ERP and required J/S (for the jamming to be effective).

Inadvertent jamming

In some cases, jamming of either type may be caused by friendly sources. Inadvertent mechanical jamming is fairly common because it is indiscriminate and affects any nearby radars, hostile or not. Electronic jamming can also be inadvertently caused by friendly sources, usually powerful EW platforms operating within range of the affected radar.

Countermeasures

Home-on-jam missile attacking an SPJ aircraft.
Home-on-jam countermeasure.
  • Constantly alternating the frequency that the radar operates on (
    spread-spectrum
    will limit the effectiveness of most jamming, making it easier to read through it. Modern jammers can track a predictable frequency change, so the more random the frequency change, the more likely it is to counter the jammer.
  • Cloaking the outgoing signal with random noise makes it more difficult for a jammer to figure out the frequency that a radar is operating on.
  • Limiting unsecure radio communication concerning the jamming and its effectiveness is also important. The jammer could be listening, and if they know that a certain technique is effective, they could direct more jamming assets to employ this method.
  • The most important method to counter radar jammers is operator training. Any system can be fooled with a jamming signal but a properly trained operator pays attention to the raw video signal and can detect abnormal patterns on the radar screen.
  • The best indicator of jamming effectiveness to the jammer is countermeasures taken by the operator. The jammer does not know if their jamming is effective before operator starts changing radar transmission settings.
  • Using EW countermeasures will give away radar capabilities thus on peacetime operations most military radars are used on fixed frequencies, at minimal power levels and with blocked
    Tx
    sectors toward possible listeners (country borders).
  • Mobile
    fire control radars
    are usually kept passive when military operations are not ongoing to keep radar locations secret.
  • low probability of intercept
    (LPI) modes to reduce the chance that the radar is detected.
  • A quantum radar system would automatically detect attempts at deceptive jamming, which might otherwise go unnoticed.[4]
  • Anti-radiation missile (ARM) also known as Home-On-Jam (HOJ) missiles: When a target is using self-protective jamming (SPJ), it essentially broadcasts its position. An ARM could be deployed and take out the jamming source. The missile utilizes passive RF homing which reduces its probability of detection. A countermeasure to ARM is not to use self-protective jamming (one could use stand-off jamming, assuming that the missiles has a range no longer than the radar), or have a decoy taking the missile (such as ADM-160 MALD and AN/ALE-55 Fiber-Optic Towed Decoy). By towing a decoy/jammer, the decoy maintains a realistic Doppler shift (which tricks the tracker) and lures an ARM away from the target.

Stealth

For protective jamming, a small radar cross section of the protected aircraft will improve the jamming efficiency (higher J/S).[citation needed] A lower RCS also reduces the "burn-through" range. Stealth technologies like

radar-absorbent materials can be used to reduce the return of a target.[citation needed
]

Interference

While not usually caused by the enemy, interference can greatly impede the ability of an operator to track. Interference occurs when two radars in relatively close proximity (how close they need to be depends on the power of the radars) are operating on the same frequency. This will cause "running rabbits", a visual phenomenon that can severely clutter up a radar display scope with useless data. Interference is not that common between ground radars, however, because they are not usually placed close enough together. It is more likely that some sort of airborne radar system is inadvertently causing the interference—especially when two or more countries are involved.

The interference between airborne radars referred to above can sometimes (usually) be eliminated by frequency-shifting transmitters.

The other interference often experienced is between the aircraft's own electronic transmitters, i.e. transponders, being picked up by its radar. This interference is eliminated by suppressing the radar's reception for the duration of the transponder's transmission. Instead of "bright-light" rabbits across the display, one would observe very small black dots. Because the external radar causing the transponder to respond is generally not synchronised with your own radar (i.e. different PRFs [pulse repetition frequency]), these black dots appear randomly across the display and the operator sees through and around them. The returning image may be much larger than the "dot" or "hole", as it has become known, anyway. Keeping the transponder's pulse widths very narrow and mode of operation (single pulse rather than multi-pulse) becomes a crucial factor.

The external radar could, in theory, come from an aircraft flying alongside your own, or from space. Another factor often overlooked is to reduce the sensitivity of one's own transponder to external radars; i.e., ensure that the transponder's threshold is high. In this way it will only respond to nearby radars—which, after all, should be friendly.

One should also reduce the power output of the transponder in like manner.

Jamming police radar

Jamming radar for the purpose of defeating police

radar guns is more simple than military-grade radar jamming.[5]
The laws about jamming police radars vary by jurisdiction.

Jamming in nature

The

tiger moth species has been confirmed.[6] This can be seen as nature's equivalent of radar jamming. Bats are found to change their emission lengths to defeat jamming.[7]

See also

References

  1. ^ Radar Countermeasures: Range Gate Pull-Off
  2. ^ EW 101: a first course in electronic warfare By David Adamy, page 196
  3. ^ ELECTRONIC WARFARE QUICK REFERENCE GUIDE
  4. ^ "Quantum Imaging Technique Heralds Unjammable Aircraft Detection."
  5. ^ "What is a (Police) Radar Jammer?". Retrieved 2013-03-14.
  6. S2CID 206520028
    .
  7. .