Rayleigh scattering

Source: Wikipedia, the free encyclopedia.
Rayleigh scattering causes the blue color of the daytime sky and the reddening of the Sun at sunset.

Rayleigh scattering (

inversely proportional to the fourth power
of the wavelength, e.g., a blue color is scattered much more than a red color as light propagates through air.

Rayleigh scattering results from the electric polarizability of the particles. The oscillating electric field of a light wave acts on the charges within a particle, causing them to move at the same frequency. The particle, therefore, becomes a small radiating dipole whose radiation we see as scattered light. The particles may be individual atoms or molecules; it can occur when light travels through transparent solids and liquids, but is most prominently seen in gases.

Rayleigh scattering of

Earth's atmosphere causes diffuse sky radiation, which is the reason for the blue color of the daytime and twilight sky, as well as the yellowish to reddish hue of the low Sun. Sunlight is also subject to Raman scattering, which changes the rotational state of the molecules and gives rise to polarization effects.[2]

Scattering by particles with a size comparable to, or larger than, the wavelength of the light is typically treated by the

Mie theory, the discrete dipole approximation and other computational techniques. Rayleigh scattering applies to particles that are small with respect to wavelengths of light, and that are optically "soft" (i.e., with a refractive index close to 1). Anomalous diffraction theory
applies to optically soft but larger particles.

History

In 1869, while attempting to determine whether any contaminants remained in the purified air he used for infrared experiments, John Tyndall discovered that bright light scattering off nanoscopic particulates was faintly blue-tinted.[3][4] He conjectured that a similar scattering of sunlight gave the sky its blue hue, but he could not explain the preference for blue light, nor could atmospheric dust explain the intensity of the sky's color.

In 1871,

Lord Rayleigh published two papers on the color and polarization of skylight to quantify Tyndall's effect in water droplets in terms of the tiny particulates' volumes and refractive indices.[5][6][7] In 1881, with the benefit of James Clerk Maxwell's 1865 proof of the electromagnetic nature of light, he showed that his equations followed from electromagnetism.[8] In 1899, he showed that they applied to individual molecules, with terms containing particulate volumes and refractive indices replaced with terms for molecular polarizability.[9]

Small size parameter approximation

The size of a scattering particle is often parameterized by the ratio

where r is the particle's radius, λ is the

dipole scattering[11] and the volume dependence will apply to any scattering mechanism. In detail, the intensity of light scattered by any one of the small spheres of diameter d and refractive index n from a beam of unpolarized light of wavelength λ and intensity I0 is given by[13]
where R is the distance to the particle and θ is the scattering angle. Averaging this over all angles gives the Rayleigh
scattering cross-section of the particles in air:[14]
Here n is the refractive index of the spheres that approximate the molecules of the gas; the index of the gas surrounding the spheres is neglected, an approximation that introduces an error of less than 0.05%.
[15]

The fraction of light scattered by scattering particles over the unit travel length (e.g., meter) is the number of particles per unit volume N times the cross-section. For example, air has a refractive index of 1.0002793 at atmospheric pressure, where there are about 2×1025 molecules per cubic meter, and therefore the major constituent of the atmosphere, nitrogen, has a Rayleigh cross section of 5.1×10−31 m2 at a wavelength of 532 nm (green light).[15] This means that about a fraction 10−5 of the light will be scattered for every meter of travel.

The strong wavelength dependence of the scattering (~λ−4) means that shorter (blue) wavelengths are scattered more strongly than longer (red) wavelengths.

From molecules

Figure showing the greater proportion of blue light scattered by the atmosphere relative to red light

The expression above can also be written in terms of individual molecules by expressing the dependence on refractive index in terms of the molecular polarizability α, proportional to the dipole moment induced by the electric field of the light. In this case, the Rayleigh scattering intensity for a single particle is given in CGS-units by[16]

and in SI-units by
.

Effect of fluctuations

When the

dielectric constant
of a certain region of volume is different from the average dielectric constant of the medium , then any incident light will be scattered according to the following equation[17]

where represents the variance of the fluctuation in the dielectric constant .

Cause of the blue color of the sky

Scattered blue light is polarized. The picture on the right is shot through a polarizing filter: the polarizer transmits light that is linearly polarized in a specific direction.

The blue color of the sky is a consequence of three factors:

The strong wavelength dependence of the Rayleigh scattering (~λ−4) means that shorter (blue) wavelengths are scattered more strongly than longer (red) wavelengths. This results in the indirect blue and violet light coming from all regions of the sky. The human eye responds to this wavelength combination as if it were a combination of blue and white light.[18]

Some of the scattering can also be from sulfate particles. For years after large

stratospheric gases. Some works of the artist J. M. W. Turner may owe their vivid red colours to the eruption of Mount Tambora in his lifetime.[19]

In locations with little

rod cells that do not produce any color perception (Purkinje effect).[20]

Of sound in amorphous solids

Rayleigh scattering is also an important mechanism of wave scattering in

amorphous solids such as glass, and is responsible for acoustic wave damping and phonon damping in glasses and granular matter at low or not too high temperatures.[21]
This is because in glasses at higher temperatures the Rayleigh-type scattering regime is obscured by the anharmonic damping (typically with a ~λ−2 dependence on wavelength), which becomes increasingly more important as the temperature rises.

In amorphous solids – glasses – optical fibers

Rayleigh scattering is an important component of the scattering of optical signals in

optical fibers. Silica fibers are glasses, disordered materials with microscopic variations of density and refractive index. These give rise to energy losses due to the scattered light, with the following coefficient:[22]

where n is the refraction index, p is the photoelastic coefficient of the glass, k is the Boltzmann constant, and β is the isothermal compressibility. Tf is a fictive temperature, representing the temperature at which the density fluctuations are "frozen" in the material.

In porous materials

Rayleigh scattering in opalescent glass: it appears blue from the side, but orange light shines through.[23]

Rayleigh-type λ−4 scattering can also be exhibited by porous materials. An example is the strong optical scattering by nanoporous materials.

alumina results in very strong scattering, with light completely changing direction each five micrometers on average. The λ−4-type scattering is caused by the nanoporous structure (a narrow pore size distribution around ~70 nm) obtained by sintering
monodispersive alumina powder.

See also

Works

References

Further reading

External links