Repeated measures design

Source: Wikipedia, the free encyclopedia.

Repeated measures design is a research design that involves multiple measures of the same variable taken on the same or matched subjects either under different conditions or over two or more time periods.[1] For instance, repeated measurements are collected in a longitudinal study in which change over time is assessed.

Crossover studies

A popular repeated-measures design is the

pharmaceutical science, and health care
, especially medicine.

Randomized, controlled, crossover experiments are especially important in health care. In a randomized clinical trial, the subjects are randomly assigned treatments. When such a trial is a repeated measures design, the subjects are randomly assigned to a sequence of treatments. A crossover clinical trial is a repeated-measures design in which each patient is randomly assigned to a sequence of treatments, including at least two treatments (of which one may be a standard treatment or a placebo): Thus each patient crosses over from one treatment to another.

Nearly all crossover designs have "balance", which means that all subjects should receive the same number of treatments and that all subjects participate for the same number of periods. In most crossover trials, each subject receives all treatments.

However, many repeated-measures designs are not crossovers: the longitudinal study of the sequential effects of repeated treatments need not use any "crossover", for example (Vonesh & Chinchilli; Jones & Kenward).

Uses

  • Limited number of participants—The repeated measure design reduces the variance of estimates of treatment-effects, allowing statistical inference to be made with fewer subjects.[2]
  • Efficiency—Repeated measure designs allow many experiments to be completed more quickly, as fewer groups need to be trained to complete an entire experiment. For example, experiments in which each condition takes only a few minutes, whereas the training to complete the tasks take as much, if not more time.
  • Longitudinal analysis—Repeated measure designs allow researchers to monitor how participants change over time, both long- and short-term situations.

Order effects

crossover design
.

Counterbalancing

In this technique, two groups each perform the same tasks or experience the same conditions, but in reverse order. With two tasks or conditions, four groups are formed.

Counterbalancing
Task/Condition Task/Condition Remarks
Group A
1
2
Group A performs Task/Condition 1 first, then Task/Condition 2
Group B
2
1
Group B performs Task/Condition 2 first, then Task/Condition 1

Counterbalancing attempts to take account of two important sources of systematic variation in this type of design: practice and boredom effects. Both might otherwise lead to different performance of participants due to familiarity with or tiredness to the treatments.

Limitations

It may not be possible for each participant to be in all conditions of the experiment (i.e. time constraints, location of experiment, etc.). Severely diseased subjects tend to drop out of longitudinal studies, potentially biasing the results. In these cases

mixed effects models
would be preferable as they can deal with missing values.

Mean regression may affect conditions with significant repetitions. Maturation may affect studies that extend over time. Events outside the experiment may change the response between repetitions.

Repeated measures ANOVA

This figure is an example of a repeated measures design that could be analyzed using a rANOVA (repeated measures ANOVA). The independent variable is the time (Levels: Time 1, Time 2, Time 3, Time 4) that someone took the measure, and the dependent variable is the happiness measure score. Example participant happiness scores are provided for 3 participants for each time or level of the independent variable.

Repeated measures analysis of variance (rANOVA) is a commonly used statistical approach to repeated measure designs.[3] With such designs, the repeated-measure factor (the qualitative independent variable) is the within-subjects factor, while the dependent quantitative variable on which each participant is measured is the dependent variable.

Partitioning of error

One of the greatest advantages to rANOVA, as is the case with repeated measures designs in general, is the ability to partition out variability due to individual differences. Consider the general structure of the F-statistic:

F = MSTreatment / MSError = (SSTreatment/dfTreatment)/(SSError/dfError)

In a between-subjects design there is an element of variance due to individual difference that is combined with the treatment and error terms:

SSTotal = SSTreatment + SSError
dfTotal = n − 1

In a repeated measures design it is possible to partition subject variability from the treatment and error terms. In such a case, variability can be broken down into between-treatments variability (or within-subjects effects, excluding individual differences) and within-treatments variability. The within-treatments variability can be further partitioned into between-subjects variability (individual differences) and error (excluding the individual differences):[4]

SSTotal = SSTreatment (excluding individual difference) + SSSubjects + SSError
dfTotal = dfTreatment (within subjects) + dfbetween subjects + dferror = (k − 1) + (n − 1) + ((nk)(n − 1))

In reference to the general structure of the F-statistic, it is clear that by partitioning out the between-subjects variability, the F-value will increase because the sum of squares error term will be smaller resulting in a smaller MSError. It is noteworthy that partitioning variability reduces degrees of freedom from the F-test, therefore the between-subjects variability must be significant enough to offset the loss in degrees of freedom. If between-subjects variability is small this process may actually reduce the F-value.[4]

Assumptions

As with all statistical analyses, specific assumptions should be met to justify the use of this test. Violations can moderately to severely affect results and often lead to an inflation of

type 1 error. With the rANOVA, standard univariate and multivariate assumptions apply.[5]
The univariate assumptions are:

The rANOVA also requires that certain multivariate assumptions be met, because a multivariate test is conducted on difference scores. These assumptions include:

  • Multivariate normality—The difference scores are multivariately normally distributed in the population.
  • Randomness—Individual cases should be derived from a random sample, and the difference scores for each participant are independent from those of another participant.

F test

As with other analysis of variance tests, the rANOVA makes use of an

F statistic to determine significance. Depending on the number of within-subjects factors and assumption violations, it is necessary to select the most appropriate of three tests:[5]

Effect size

One of the most commonly reported effect size statistics for rANOVA is partial eta-squared (ηp2). It is also common to use the multivariate η2 when the assumption of sphericity has been violated, and the multivariate test statistic is reported. A third effect size statistic that is reported is the generalized η2, which is comparable to ηp2 in a one-way repeated measures ANOVA. It has been shown to be a better estimate of effect size with other within-subjects tests.[8][9]

Cautions

rANOVA is not always the best statistical analysis for repeated measure designs. The rANOVA is vulnerable to effects from missing values, imputation, unequivalent time points between subjects and violations of sphericity.[3] These issues can result in sampling bias and inflated rates of Type I error.[10] In such cases it may be better to consider use of a linear mixed model.[11]

See also

Notes

References

Design and analysis of experiments

Exploration of longitudinal data

External links