Runcicantellated tesseractic honeycomb

Source: Wikipedia, the free encyclopedia.
Runcicantellated tesseractic honeycomb
(No image)
Type
Uniform 4-honeycomb
Schläfli symbol t0,2,3{4,3,3,4}
Coxeter-Dynkin diagram

4-face type
bitruncated tesseract


tesseract
runcitruncated 16-cell

Cell type
Face type {4}, {6}, {8}
Vertex figure trapezoidal duopyramid
Coxeter group = [4,3,3,4]
= [4,3,31,1]
Dual
Properties
vertex-transitive

In four-dimensional Euclidean geometry, the runcicantellated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

The [4,3,3,4], , Coxeter group generates 31 permutations of uniform tessellations, 21 with distinct symmetry and 20 with distinct geometry. The expanded tesseractic honeycomb (also known as the stericated tesseractic honeycomb) is geometrically identical to the tesseractic honeycomb. Three of the symmetric honeycombs are shared in the [3,4,3,3] family. Two alternations (13) and (17), and the quarter tesseractic (2) are repeated in other families.

C4 honeycombs
Extended
symmetry
Extended
diagram
Order Honeycombs
[4,3,3,4]: ×1

1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13

[[4,3,3,4]] ×2 (1), (2), (13), 18
(6), 19, 20
[(3,3)[1+,4,3,3,4,1+]]
↔ [(3,3)[31,1,1,1]]
↔ [3,4,3,3]


×6

14, 15, 16, 17

The [4,3,31,1], , Coxeter group generates 31 permutations of uniform tessellations, 23 with distinct symmetry and 4 with distinct geometry. There are two alternated forms: the alternations (19) and (24) have the same geometry as the 16-cell honeycomb and snub 24-cell honeycomb respectively.

B4 honeycombs
Extended
symmetry
Extended
diagram
Order Honeycombs
[4,3,31,1]: ×1

5, 6, 7, 8

<[4,3,31,1]>:
↔[4,3,3,4]

×2

9, 10, 11, 12, 13,

14
,

(10), 15, 16, (13), 17, 18, 19

[3[1+,4,3,31,1]]
↔ [3[3,31,1,1]]
↔ [3,3,4,3]


×3

1, 2, 3, 4

[(3,3)[1+,4,3,31,1]]
↔ [(3,3)[31,1,1,1]]
↔ [3,4,3,3]


×12

20, 21, 22, 23

See also

Regular and uniform honeycombs in 4-space:

Notes

References

  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Klitzing, Richard. "4D Euclidean tesselations#4D". x3x3x *b3o4x, x4o3x3x4o - prittit - O97
  • Conway JH, Sloane NJH (1998). Sphere Packings, Lattices and Groups (3rd ed.). Springer. .
Space Family / /
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3
Uniform convex honeycomb
0[4] δ4 4 4
E4
Uniform 4-honeycomb
0[5] δ5 5 5 24-cell honeycomb
E5
Uniform 5-honeycomb
0[6] δ6 6 6
E6
Uniform 6-honeycomb
0[7] δ7 7 7 222
E7
Uniform 7-honeycomb
0[8] δ8 8 8 133331
E8
Uniform 8-honeycomb
0[9] δ9 9 9 152251521
E9
Uniform 9-honeycomb
0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En−1 Uniform (n−1)-honeycomb
0[n]
δn n n 1k22k1k21