Bitruncated tesseractic honeycomb

Source: Wikipedia, the free encyclopedia.
Bitruncated tesseractic honeycomb
(No image)
Type Uniform 4-honeycomb
Schläfli symbol t1,2{4,3,3,4} or 2t{4,3,3,4}
t1,2{4,31,1} or 2t{4,31,1}
t2,3{4,31,1}
q2{4,3,3,3,4}
Coxeter-Dynkin diagram




=

4-face type
Truncated 16-cell
Cell type Octahedron
Truncated tetrahedron
Truncated octahedron
Face type {3}, {4}, {6}
Vertex figure
Square-pyramidal pyramid
Coxeter group = [4,3,3,4]
= [4,31,1]
= [31,1,1,1]
Dual
Properties
vertex-transitive

In four-dimensional Euclidean geometry, the bitruncated tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space. It is constructed by a bitruncation of a tesseractic honeycomb. It is also called a cantic quarter tesseractic honeycomb from its q2{4,3,3,4} construction.

Other names

  • Bitruncated tesseractic tetracomb (batitit)

The [4,3,3,4], , Coxeter group generates 31 permutations of uniform tessellations, 21 with distinct symmetry and 20 with distinct geometry. The expanded tesseractic honeycomb (also known as the stericated tesseractic honeycomb) is geometrically identical to the tesseractic honeycomb. Three of the symmetric honeycombs are shared in the [3,4,3,3] family. Two alternations (13) and (17), and the quarter tesseractic (2) are repeated in other families.

C4 honeycombs
Extended
symmetry
Extended
diagram
Order Honeycombs
[4,3,3,4]: ×1

1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13

[[4,3,3,4]] ×2 (1), (2), (13), 18
(6), 19, 20
[(3,3)[1+,4,3,3,4,1+]]
↔ [(3,3)[31,1,1,1]]
↔ [3,4,3,3]


×6

14, 15, 16, 17

The [4,3,31,1], , Coxeter group generates 31 permutations of uniform tessellations, 23 with distinct symmetry and 4 with distinct geometry. There are two alternated forms: the alternations (19) and (24) have the same geometry as the 16-cell honeycomb and snub 24-cell honeycomb respectively.

B4 honeycombs
Extended
symmetry
Extended
diagram
Order Honeycombs
[4,3,31,1]: ×1

5, 6, 7, 8

<[4,3,31,1]>:
↔[4,3,3,4]

×2

9, 10, 11, 12, 13,

14
,

(10), 15, 16, (13), 17, 18, 19

[3[1+,4,3,31,1]]
↔ [3[3,31,1,1]]
↔ [3,3,4,3]


×3

1, 2, 3, 4

[(3,3)[1+,4,3,31,1]]
↔ [(3,3)[31,1,1,1]]
↔ [3,4,3,3]


×12

20, 21, 22, 23

There are ten uniform honeycombs constructed by the Coxeter group, all repeated in other families by extended symmetry, seen in the graph symmetry of rings in the Coxeter–Dynkin diagrams. The 10th is constructed as an alternation. As subgroups in Coxeter notation: [3,4,(3,3)*] (index 24), [3,3,4,3*] (index 6), [1+,4,3,3,4,1+] (index 4), [31,1,3,4,1+] (index 2) are all isomorphic to [31,1,1,1].

The ten permutations are listed with its highest extended symmetry relation:

D4 honeycombs
Extended
symmetry
Extended
diagram
Extended
group
Honeycombs
[31,1,1,1] (none)
<[31,1,1,1]>
↔ [31,1,3,4]

×2 = (none)
<2[1,131,1]>
↔ [4,3,3,4]

×4 = 1, 2
[3[3,31,1,1]]
↔ [3,3,4,3]

×6 = 3, 4, 5, 6
[4[1,131,1]]
↔ [[4,3,3,4]]

×8 = ×2 7, 8, 9
[(3,3)[31,1,1,1]]
↔ [3,4,3,3]

×24 =
[(3,3)[31,1,1,1]]+
↔ [3+,4,3,3]

½×24 = ½ 10

See also

Regular and uniform honeycombs in 4-space:

Notes

References

Space Family / /
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3
Uniform convex honeycomb
0[4] δ4 4 4
E4
Uniform 4-honeycomb
0[5] δ5 5 5 24-cell honeycomb
E5
Uniform 5-honeycomb
0[6] δ6 6 6
E6
Uniform 6-honeycomb
0[7] δ7 7 7 222
E7
Uniform 7-honeycomb
0[8] δ8 8 8 133331
E8
Uniform 8-honeycomb
0[9] δ9 9 9 152251521
E9
Uniform 9-honeycomb
0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En−1 Uniform (n−1)-honeycomb
0[n]
δn n n 1k22k1k21