Schur multiplier
Algebraic structure → Group theory Group theory |
---|
![]() |
In mathematical
Examples and properties
The Schur multiplier of a finite group G is a finite
For instance, the Schur multiplier of the
The Schur multipliers of the finite simple groups are given at the list of finite simple groups. The covering groups of the alternating and symmetric groups are of considerable recent interest.
Relation to projective representations
Schur's original motivation for studying the multiplier was to classify projective representations of a group, and the modern formulation of his definition is the second cohomology group . A projective representation is much like a group representation except that instead of a homomorphism into the general linear group , one takes a homomorphism into the
Relation to central extensions
The study of such covering groups led naturally to the study of
A
where is a subgroup of the center of C.
A stem extension of a group G is an extension
where is a subgroup of the intersection of the center of C and the
If the group G is finite and one considers only stem extensions, then there is a largest size for such a group C, and for every C of that size the subgroup K is isomorphic to the Schur multiplier of G. If the finite group G is moreover
It is also called more briefly a universal central extension, but note that there is no largest central extension, as the direct product of G and an abelian group form a central extension of G of arbitrary size.
Stem extensions have the nice property that any lift of a generating set of G is a generating set of C. If the group G is presented in terms of a free group F on a set of generators, and a normal subgroup R generated by a set of relations on the generators, so that , then the covering group itself can be presented in terms of F but with a smaller normal subgroup S, that is, . Since the relations of G specify elements of K when considered as part of C, one must have .
In fact if G is perfect, this is all that is needed: C ≅ [F,F]/[F,R] and M(G) ≅ K ≅ R/[F,R]. Because of this simplicity, expositions such as (Aschbacher 2000, §33) handle the perfect case first. The general case for the Schur multiplier is similar but ensures the extension is a stem extension by restricting to the derived subgroup of F: M(G) ≅ (R ∩ [F, F])/[F, R]. These are all slightly later results of Schur, who also gave a number of useful criteria for calculating them more explicitly.
Relation to efficient presentations
In
A fairly recent topic of research is to find efficient presentations for all finite simple groups with trivial Schur multipliers. Such presentations are in some sense nice because they are usually short, but they are difficult to find and to work with because they are ill-suited to standard methods such as coset enumeration.
Relation to topology
In topology, groups can often be described as finitely presented groups and a fundamental question is to calculate their integral homology . In particular, the second homology plays a special role and this led Heinz Hopf to find an effective method for calculating it. The method in (Hopf 1942) is also known as Hopf's integral homology formula and is identical to Schur's formula for the Schur multiplier of a finite group:
where and F is a free group. The same formula also holds when G is a perfect group.[3]
The recognition that these formulas were the same led
where the star denotes the algebraic dual group. Moreover, when G is finite, there is an unnatural isomorphism
The Hopf formula for has been generalised to higher dimensions. For one approach and references see the paper by Everaert, Gran and Van der Linden listed below.
A
Applications
The second algebraic K-group K2(R) of a commutative ring R can be identified with the second homology group H2(E(R), Z) of the group E(R) of (infinite) elementary matrices with entries in R.[4]
See also
The references from Clair Miller give another view of the Schur Multiplier as the kernel of a morphism κ: G ∧ G → G induced by the commutator map.
Notes
- ^ Rotman 1994, p. 553
- ^ Johnson & Robertson 1979, pp. 275–289
- ^ Rosenberg 1994, Theorems 4.1.3, 4.1.19
- ^ Rosenberg 1994, Corollary 4.2.10
References
- Zbl 0997.20001
- Zbl 0027.09503
- Johnson, David Lawrence; Robertson, Edmund Frederick (1979), "Finite groups of deficiency zero", in Zbl 0423.20029
- Kuzmin, Leonid Viktorovich (2001) [1994], "Schur multiplicator", Encyclopedia of Mathematics, EMS Press
- Zbl 0801.19001 Errata
- Rotman, Joseph J. (1994), An introduction to the theory of groups, ISBN 978-0-387-94285-8
- JFM 35.0155.01
- JFM 38.0174.02
- Van der Kallen, Wilberd (1984), "Review: F. Rudolf Beyl and Jürgen Tappe, Group extensions, representations, and the Schur multiplicator",
- Zbl 0502.20003
- Miller, Clair (1952), "The second homology of a group", Zbl 0047.25703
- Dennis, R.K. (1976), In search of new "Homology" functors having a close relationship to K-theory, Cornell University
- Brown, R.; Johnson, D.L.; Robertson, E.F. (1987), "Some computations of non-abelian tensor products of groups", Journal of Algebra, 111: 177–202, Zbl 0626.20038
- Ellis, G.J.; Leonard, F. (1995), "Computing Schur multipliers and tensor products of finite groups", Proceedings of the Royal Irish Academy, 95A (2): 137–147, Zbl 0863.20010
- Ellis, Graham J. (1998), "The Schur multiplier of a pair of groups", Applied Categorical Structures, 6 (3): 355–371, Zbl 0948.20026
- Eick, Bettina; Nickel, Werner (2008), "Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group", Journal of Algebra, 320 (2): 927–944, Zbl 1163.20022
- Everaert, Tomas; Gran, Marino; Van der Linden, Tim (2008), "Higher Hopf formulae for homology via Galois theory", Zbl 1140.18012