Schur multiplier

Source: Wikipedia, the free encyclopedia.

In mathematical

homology group
of a group G. It was introduced by Issai Schur (1904) in his work on projective representations.

Examples and properties

The Schur multiplier of a finite group G is a finite

Sylow p-subgroup
of G is cyclic for some p, then the order of is not divisible by p. In particular, if all
Sylow p-subgroups
of G are cyclic, then is trivial.

For instance, the Schur multiplier of the

nonabelian group of order 6 is the trivial group since every Sylow subgroup is cyclic. The Schur multiplier of the elementary abelian group of order 16 is an elementary abelian group of order 64, showing that the multiplier can be strictly larger than the group itself. The Schur multiplier of the quaternion group is trivial, but the Schur multiplier of dihedral 2-groups
has order 2.

The Schur multipliers of the finite simple groups are given at the list of finite simple groups. The covering groups of the alternating and symmetric groups are of considerable recent interest.

Relation to projective representations

central extension
C of G.

Schur's original motivation for studying the multiplier was to classify projective representations of a group, and the modern formulation of his definition is the second cohomology group . A projective representation is much like a group representation except that instead of a homomorphism into the general linear group , one takes a homomorphism into the

projective general linear group
. In other words, a projective representation is a representation modulo the
center
.

isoclinism
.

Relation to central extensions

The study of such covering groups led naturally to the study of

central
and stem extensions.

A

central extension
of a group G is an extension

where is a subgroup of the center of C.

A stem extension of a group G is an extension

where is a subgroup of the intersection of the center of C and the

derived subgroup of C; this is more restrictive than central.[1]

If the group G is finite and one considers only stem extensions, then there is a largest size for such a group C, and for every C of that size the subgroup K is isomorphic to the Schur multiplier of G. If the finite group G is moreover

isoclinic
.

It is also called more briefly a universal central extension, but note that there is no largest central extension, as the direct product of G and an abelian group form a central extension of G of arbitrary size.

Stem extensions have the nice property that any lift of a generating set of G is a generating set of C. If the group G is presented in terms of a free group F on a set of generators, and a normal subgroup R generated by a set of relations on the generators, so that , then the covering group itself can be presented in terms of F but with a smaller normal subgroup S, that is, . Since the relations of G specify elements of K when considered as part of C, one must have .

In fact if G is perfect, this is all that is needed: C ≅ [F,F]/[F,R] and M(G) ≅ KR/[F,R]. Because of this simplicity, expositions such as (Aschbacher 2000, §33) handle the perfect case first. The general case for the Schur multiplier is similar but ensures the extension is a stem extension by restricting to the derived subgroup of F: M(G) ≅ (R ∩ [F, F])/[F, R]. These are all slightly later results of Schur, who also gave a number of useful criteria for calculating them more explicitly.

Relation to efficient presentations

In

efficient group is one where the Schur multiplier requires this number of generators.[2]

A fairly recent topic of research is to find efficient presentations for all finite simple groups with trivial Schur multipliers. Such presentations are in some sense nice because they are usually short, but they are difficult to find and to work with because they are ill-suited to standard methods such as coset enumeration.

Relation to topology

In topology, groups can often be described as finitely presented groups and a fundamental question is to calculate their integral homology . In particular, the second homology plays a special role and this led Heinz Hopf to find an effective method for calculating it. The method in (Hopf 1942) is also known as Hopf's integral homology formula and is identical to Schur's formula for the Schur multiplier of a finite group:

where and F is a free group. The same formula also holds when G is a perfect group.[3]

The recognition that these formulas were the same led

cohomology of groups
. In general,

where the star denotes the algebraic dual group. Moreover, when G is finite, there is an unnatural isomorphism

The Hopf formula for has been generalised to higher dimensions. For one approach and references see the paper by Everaert, Gran and Van der Linden listed below.

A

acyclic group
is a group all of whose reduced integral homology vanishes.

Applications

The second algebraic K-group K2(R) of a commutative ring R can be identified with the second homology group H2(E(R), Z) of the group E(R) of (infinite) elementary matrices with entries in R.[4]

See also

The references from Clair Miller give another view of the Schur Multiplier as the kernel of a morphism κ: G ∧ G → G induced by the commutator map.

Notes

  1. ^ Rotman 1994, p. 553
  2. ^ Johnson & Robertson 1979, pp. 275–289
  3. ^ Rosenberg 1994, Theorems 4.1.3, 4.1.19
  4. ^ Rosenberg 1994, Corollary 4.2.10

References