Software visualization

Source: Wikipedia, the free encyclopedia.

Software visualization

runtime behavior—and their development process by means of static, interactive or animated 2-D or 3-D[3] visual representations of their structure,[4] execution,[5] behavior,[6]
and evolution.

Software system information

Software visualization uses a variety of information available about software systems. Key information categories include:

Objectives

The objectives of software visualization are to support the

coupling) and their development and evolution. One of the strengths of software visualization is to combine and relate information of software systems that are not inherently linked, for example by projecting code changes onto software execution traces.[7]

Software visualization can be used as tool and technique to explore and analyze software system information, e.g., to discover anomalies similar to the process of visual data mining.[8] For example, software visualization is used to monitoring activities such as for code quality or team activity.[9] Visualization is not inherently a method for software quality assurance.[citation needed] Software visualization participates to Software Intelligence in allowing to discover and take advantage of mastering inner components of software systems.

Types

Tools for software visualization might be used to visualize source code and quality defects during software development and maintenance activities. There are different approaches to map source code to a visual representation such as by software maps[10] Their objective includes, for example, the automatic discovery and visualization of quality defects in object-oriented software systems and services. Commonly, they visualize the direct relationship of a class and its methods with other classes in the software system and mark potential quality defects. A further benefit is the support for visual navigation through the software system.

More or less specialized

Borland Together, and more specialized tools like Visualization of Compiler Graphs (VCG) and Rigi.[11]: 99–100  The range of UML tools that can act as a visualizer by reverse engineering source is by no means short; a 2007 book noted that besides the two aforementioned tools, ESS-Model, BlueJ, and Fujaba also have this capability, and that Fujaba can also identify design patterns.[12]

See also

References

Further reading

External links

  • SoftVis the ACM Symposium on Software Visualization
  • VISSOFT 2nd IEEE Working Conference on Software Visualization
  • EPDV Eclipse Project Dependencies Viewer