Soiling (solar energy)

Source: Wikipedia, the free encyclopedia.

Soiling is the accumulation of material on light-collecting surfaces in

concentrated photovoltaics, and concentrated solar (thermal) power. However, the consequences of soiling are higher for concentrating systems than for non-concentrating systems.[1]
Note that soiling refers to both the process of accumulation and the accumulated material itself.

There are several ways to reduce the effect of soiling. The antisoiling coating[2] is most important solution for solar power projects. But water cleaning is the most widely used technique so far due to absence of antisoiling coatings in past. Soiling losses vary largely from region to region, and within regions. Average soiling-induced power losses can be below one percent in regions with frequent rain.[3] As of 2018, the estimated global average annual power loss due to soiling is 5% to 10% percent. The estimated soiling-induced revenue loss is 3 – 5 billion euros.[1]

Physics of soiling

Soiling is typically caused by the

biofilms of bacteria.[1][4]
Which of these soiling mechanisms are most prominent depends on the location.

Soiling either blocks the light completely (hard shading), or it lets through some sunlight (soft shading). With soft shading, parts of the

collimated) light coming directly from the sun. For this reason, concentrated solar power is more sensitive to soiling than conventional photovoltaics. Typical soiling-induced power losses are 8-14 times higher for concentrated solar power than for photovoltaics.[5]

Influence of geography and meteorology

Soiling losses vary greatly from region to region, and within regions.[3][6][7][8]

The rate at which soiling deposits depends on geographical factors such as proximity to deserts, agriculture, industry, and roads, as these are likely to be sources of

airborne particles. If a location is close to a source of airborne particles, the risk of soiling losses is high.[9]

The soiling rate (see definition below) varies from season to season and from location to location, but is typically between 0%/day and 1%/day.[1] However, average deposition rates as high as 2.5%/day have been observed for conventional photovoltaics in China.[1] For concentrated solar power, soiling rates as high 5%/day have been observed.[1] In regions with high soiling rates, soiling can become a significant contributor to power losses. As an extreme example, the total losses due to soiling of a photovoltaic system in the city of Helwan (Egypt) were observed to reach 66% at one point.[10] The soiling in Helwan was attributed to dust from a nearby desert and local industry pollution. Several initiatives to map out the soiling risk of different regions of the world exist.[3][11][12]

Soiling losses also depend on

meteorological parameters such as rain, temperature, wind, humidity, and cloud cover.[13]
The most important meteorological factor is the average frequency of rain,
solar panels/mirrors. If there is consistent rain throughout the whole year at a given site, the soiling losses are likely to be small. However, light rain and dew can also lead to increased particle adhesion, increasing the soiling losses.[13][14][15]
Some climates are favorable for the growth of biological soiling, but it is not known what the decisive factors are.[4] The dependence of soiling on climate and weather is a complex matter. As of 2019, it is not possible to accurately predict soiling rates based on meteorological parameters.[1]

Quantifying soiling losses

The level of soiling in a photovoltaic system can be expressed with the soiling ratio (SR), defined in the technical standard IEC 61724-1[16] as:

Hence, if there is no soiling, and if , there is so much soiling that there is no production in the photovoltaic system. An alternative metric is the soiling loss (SL), which is defined as . The soiling loss represents the fraction of energy lost due to soiling.

The soiling deposition rate (or soiling rate) is the rate of change of the soiling loss, typically given in %/day. Note that most sources define the soiling rate to be positive in the case of increasing soiling losses'[1][17][18] but some sources use the opposite sign[NREL].[3]

A procedure for measuring the soiling ratio at

short-circuit current of the clean device. This setup is also referred to as a "soiling measurement station", or just "soiling station".[9][19]

Methods that estimate soiling ratios and soiling deposition rates of photovoltaic systems without the use of dedicated soiling stations have been proposed,

photovoltaic systems. A project for mapping out the soiling losses throughout the United States was started in 2017.[3] This project is based on data from both soiling stations and photovoltaic systems, and uses the method proposed in [20]
to extract soiling ratios and soiling rates.

Mitigation techniques

There are many different options for

rooftop systems, and systems with fixed inclination involve different concerns than systems with solar trackers
. The most common mitigation techniques are:

This means one can expect solar panels to be more resistant to soiling losses in the future.
Wet-chemically etched nanowires and a hydrophobic coating on the surface water droplets was shown to be able to remove 98% of dust particles.[23][24]
  • Cleaning: The most used approach to
    solar panels/mirrors. Cleaning can be manual, semi-automatic, or fully automatic. Manual cleaning involves people using brushes or mops. This requires a low capital investment, but it has a high cost of labor. Semi-automatic cleaning involves people using machines to aid the cleaning, typically a tractor equipped with a rotating brush.[25]
This approach requires a higher capital investment, but involves lower cost of labor than manual cleaning. Fully automatic cleaning involves the use of robots that clean the solar panels at night.[26]
This approach requires the highest capital cost, but involves no manual labor except for maintenance of the robots. All three methods may or may not use water. Typically, water makes the cleaning more efficient. However, if water is a scarce or expensive resource at the given site, dry cleaning may be preferred.[4] See Economic consequences for typical costs of cleaning.
  • Anti-soiling coatings: Anti-soiling
    solar panels or mirrors in order to reduce the adhesion of dust and dirt. Some anti-soiling coatings are meant to enhance the self-cleaning properties, i.e. the probability that the surface will be cleaned by rain.[27]
The coating can be applied to the panels/mirrors during production or retrofitted after they have been installed. As of 2019, no particular anti-soiling technology had been widely adopted, mostly due to a lack of durability.[1]
  • Electrodynamic screens:
    solar panels or mirrors. Time-varying electromagnetic fields are set up by applying alternating voltages to the grid. The field interacts with the deposited particles, moving them off the surface. This technology is viable if the energy needed to remove the dust is smaller than the energy gained by lowering the soiling loss. As of 2019, this technology has been demonstrated in the lab, but it still remains to be proven in the field.[1]
  • Electrostatic dust removal[28][29]

Economic consequences

The cost of cleaning depends on what cleaning technique is used and the cost of labor at the given location. Furthermore, there is a difference between large-scale

rooftop systems. The cost of cleaning of large-scale systems vary from 0.015 euro/m2 in the cheapest countries to 0.9 euro/m2 in the Netherlands.[1] The cost of cleaning of rooftop systems have been reported to be as low as 0.06 euro/m2 in China, and as high as 8 euro/m2 in the Netherlands.[1]

Soiling leads to reduced power production in the affected solar power equipment. Whether or not money is spent on mitigating soiling losses, soiling leads to a reduced revenue for the owners of the system. The magnitude of the revenue loss depends mostly on the cost of soiling mitigation, the soiling deposition rate, and the frequency of rain at the given location. Ilse et al. estimated the global average annual soiling loss to be between 3% and 4% in 2018.[1] This estimate was made under the assumption that all solar power systems are cleaned with an optimal fixed frequency. Based on this estimate, the total cost of soiling (including power losses and mitigation costs) in 2018 was estimated to between 3 and 5 billion euros.[1] This could grow to between 4 and 7 billion euros by 2023.[1] A method to obtain the power loss, energy loss and economic loss due to soiling, directly from PV remote monitoring system time-series data has been discussed in [30] which can help the PV asset owners to timely clean the panels.

See also

References

  1. ^ .
  2. ^ "Home". radsglobal.nl.
  3. ^ a b c d e "Photovoltaic Module Soiling Map". National Renewable Energy Laboratory. 2017-10-11. Retrieved 2020-12-03.
  4. ^
    S2CID 103082921
    . Retrieved 2020-12-10.
  5. . Retrieved 2020-12-04.
  6. . Retrieved 2020-12-04.
  7. .
  8. ^ . Retrieved 2020-12-04.
  9. ^ .
  10. ^ Hassan A, Rahoma U, Elminir H (2005). "Effect of airborne dust concentration on the performance of PV modules". Journal of Astronomical Society Egypt. 13: 24–38.
  11. .
  12. .
  13. ^ . Retrieved 2020-12-04.
  14. . Retrieved 2018-10-09.
  15. . Retrieved 2018-12-12.
  16. ^ a b IEC 61724-1:2017 – Photovoltaic system performance – Part 1: Monitoring (1.0 ed.). International Electrotechnical Commission (IEC). 2017.
  17. ^
    S2CID 9613142
    . Retrieved 2018-06-13.
  18. . Retrieved 2020-12-07.
  19. . Retrieved 2020-12-03.
  20. ^ .
  21. .
  22. .
  23. ^ American Associates, Ben-Gurion University of the Negev (9 December 2019). "Researchers develop new method to remove dust on solar panels". Ben-Gurion University of the Negev. Retrieved 3 January 2020.
  24. S2CID 201673096
    .
  25. . Retrieved 2018-06-04.
  26. . Retrieved 2019-06-06.
  27. . Retrieved 2020-12-07.
  28. ^ "Static electricity can keep desert solar panels free of dust". New Scientist. Retrieved 18 April 2022.
  29. PMID 35275728
    .
  30. .

External links