Southeast Australian foehn

Source: Wikipedia, the free encyclopedia.
Jindabyne

The southeast Australian foehn is a

leeward side of the Great Dividing Range.[1]

Ranging from cool to hot (depending on the season), the effect occurs when westerly winds descend steeply from the Great Dividing Range onto the coastal slopes, thereby causing major

adiabatic compression (the rate at which temperature decreases with altitude) and a substantial loss of moisture.[2][3][4]
The effect is known by other names, such as the Australian chinook, the Great Dividing wind, the Great Dividing foehn or simply westerly foehn.

Typically occurring from late autumn to spring, though not completely unheard of in the summer (particularly in eastern Tasmania),

frontal system (which brings rainy and windy weather to southern capitals like Melbourne, Perth and Adelaide) passes over the Great Dividing Range and thereby provides clear to partly cloudy, relatively warmer conditions on the lee.[b][5][6]

Origins

Foehn winds usually occur when the westerly wind belt moves northwards.[7]

The foehn effect on the coastal plains of southeastern Australia is mostly linked with the passage of a deep

orographic blocking of comparatively moist low-level air and the subsidence of drier upper-level air in the lee of the mountains.[2]

Foehn occurrence on the southeast coastal plains can also occur when hot, northwesterly winds blow from the

interior (even when there is little moisture on the windward side), because the air heats up faster as it descends into the plains than it cooled as it ascended the ranges.[8]

Typically between 60 km/h (37 mph) to 70 km/h (43 mph), sometimes they may be brought on by a large polar air mass from the south-west of the continent in the Southern Ocean which moves east or north-eastward across Victoria towards the east coast.[9] Moreover, temperatures on the lee of the Great Dividing Range tend to rise substantially (due to a katabatic effect)[10] when cold fronts push warm and dry air from the desert across the country's eastern states and over the Range (this is generally followed by a southerly buster).[2][11]

As such, the Great Dividing foehn is one the few reasons why Sydney, among other places on the coastal plain, registers high temperatures in the warm season but seldom attains cold maximum temperatures in the winter.[8][12][13] Furthermore, when the warm season north-westerly winds strike (such as the Brickfielder), the hottest and driest areas of southeastern Australia will generally be located along the southern coastal region of NSW in the lee of the Great Dividing range and coastal escarpment due to the foehn effect. Much lower relative humidity figures would also observed in these leeward stations.[14]

Formation

Föhn wind illustration (Left [West]: windward side, Right [East]: leeward side).

The southeast Australian foehn is distinguished by three criteria; surface winds which blow from the mountains' direction, a sharp rise in air temperature in the leeward side of the mountains, and an accompanying diminution in atmospheric moisture.[2]

As the moist air rises over the windward side of the ranges, it cools and it would condense, thereby creating precipitation on the upwind slopes. The precipitation then gets rid of the moisture from the air mass on the lee side of the ranges, and the

adiabatic compression.[15]

During these conditions, an orographic cloud band, or the Föhn wall, builds up along the ridgelines of the southeastern highlands due to condensation of moisture as the air ascends the windward slopes. Meanwhile, the Föhn arch, with its broad layer of

The existence of topographically induced atmospheric waves in connection with foehn occurrence has been indicated, which develop with the descent of upper-level air above of the ridgetop and pass into the lee of the ranges as broad-scale, vertically supporting gravity waves. The wind shears and the strength of the downslope motion manifested in the model examination also point that the onslaught of foehn conditions results in increased turbulence near the surface, evident in the gusty conditions observed at the lee stations.[2] In addition to the foehn winds, the same westerly winds also ward off the cooling sea breezes that arrive from the northeast, thereby preventing them from developing in the eastern seaboard.[16]

A vertically propagating

high diurnal range of temperature
.

Occurrence

cloud streets
forming on the slopes).

The Great Dividing foehn is primarily observed in the southeast of New South Wales, east of the Great Dividing Range, in places such as the

Hunter Valley and the Mid North Coast to the north. In many instances, it is observed in the East Gippsland region in Victoria[c] as well as the eastern portion of Tasmania
to the south.

Foehn winds may also impact other parts of Australia, such as east of the Great Dividing Range in southeast

northern New South Wales.[2] The Great Dividing foehn does not heavily impact areas northward from the Central Coast. The effect is gradient; being more common and efficacious towards the South Coast (due to the latter region being in the track of prevailing westerlies, which exponentially falters north of 35° S). With leeward areas, or areas that receive foehn winds, precipitation is predominantly derived from the Tasman Sea to the east, since the Great Dividing Range blocks frontal westerlies off the Southern Ocean (which are most frequent between May and October). Consequently, winters in leeward zones are drier with the summers being relatively wet, unlike those on the windward side which, conversely, have drier summers and damp winters.[2]

Areas that lie to the west of the Great Dividing Range are windward and therefore never experience a foehn effect under a westerly stream, with persistent cloud cover. On the contrary, the Great Dividing Range also blocks frontal systems originating in the southern Tasman as well as the eastern Bass Strait. When south/southeasterly frontal systems lift over the coastal slopes, the western edge of the Range would, conversely, experience foehn-like winds.[d][17]

In southeastern Queensland, foehn winds are associated with prefrontal/pre-trough gradient northwesterly winds, post-frontal west to southwesterly gradient winds linked with

Applethorpe to Archerfield Airport line of area recorded around 20 foehn events per year, followed by the Toowoomba to Archerfield Airport transect recorded 19 foehn events per year, becoming rarer towards Warwick.[18]

Leeward zones

Sydney CBD
)
Transitional zones

Effects

The Great Dividing wind can be particularly damaging to homes and would

Santa Ana winds in California, they may elevate fire danger in the warmer months due to their dry, gusty nature.[23]

Foehn winds in general have been linked to

suicide contemplation, although this study has not been proven.[24] Though recent studies regarding migraine attacks during Chinook winds suggest there may be some truth in it.[25]

Notable observations

In September, when the foehn effect is usually strong, green pastures on the windward side (left, Central Tablelands) can be contrasted from the dry landscape on the leeward (right, Greater Western Sydney).

See also

Notes

  1. ^ They occur throughout the year in Tasmania as the island sits in the path of the Roaring Forties and/or the prevailing westerlies.
  2. ^ Temperatures on the coastal plain are relative and therefore variable, ranging from 15 °C (59 °F) at the coolest (which is usual during polar blasts) to as high as 45 °C (113 °F) – All depending on the conditions on the windward side.
  3. ^ Victoria is mostly exposed to westerly fronts due to its south-facing location and western longitude. Therefore, Victoria's east can still be windward on some occasions, especially when westerly fronts are vigorous.
  4. South West Slopes and North West Slopes regions, as well as the grand majority of Victoria and the entirety of South Australia
    .
  5. ^ When south-westerly frontal systems are powerful, their accompanying clouds and precipitation may occasionally 'spillover' the NSW coastal plain for a short period of time, although no more than 2 mm (0.079 in) of rain will be recorded.

References

  1. ^ a b Rain Shadows by Don White. Australian Weather News. Willy Weather. Retrieved 24 May 2021.
  2. ^ a b c d e f g h i j k l m n o p Jason J. Sharples, Graham A. Mills, Richard H. D. McRae, and Rodney O. Weber. "Foehn-Like Winds and Elevated Fire Danger Conditions in Southeastern Australia". Journal of Applied Meteorology and Climatology. American Meteorological Society.{{cite news}}: CS1 maint: multiple names: authors list (link)
  3. ^ Where has the rain gone in Sydney? by Ben Domensino from Weatherzone. 22 June 2022. Retrieved 23 June 2022
  4. ^ "Climate and the Sydney 2000 Olympic Games". Australian Government. Australian Bureau of Statistics. 24 September 2007. Archived from the original on 10 June 2008. Retrieved 31 August 2023.
  5. ^ Rain one side, heat the other in NSW by Joel Pippard. Weatherzone. 16 April 2020. Retrieved 6 October 2021
  6. ^ Anthony Sharwood (10 September 2024). "Sydney facing driest spell in over three years". WeatherZone. Retrieved 10 September 2024.
  7. ^ Roaring Forties' shift south means more droughts for southern Australia by Helen Davidson from The Guardian. 12 May 2014. Retrieved 3 September 2022.
  8. ^ a b Weather Glossary - F Farmonline Weather
  9. ^ Wilder winds, less rain, as Roaring Forties become Furious Fifties By Peter Hannam and Environment Editor, Sydney Morning Herald, 11 May 2014. Retrieved 6 August 2020
  10. ^ The climate of Sydney, Australia The Department of Atmospheric Science. University of Wyoming. E. Linacre and B. Geerts, November 1998
  11. ^ Early taste of spring in eastern Australia Ben Domensino from Weatherzone. Thursday August 19, 2021
  12. ^ Was Penrith the hottest place on Earth on Sunday? by Ben Domensino, 8 January 2018. Retrieved 7 October 2021.
  13. ^ Local climate processes in the Illawarra by Edward A. Bryant, Department of Geography, University of Wollongong, 1982
  14. ^ Urban Heat Island Mitigation Technologies. Edited by Rohinton Emmanuel. Glasgow Caledonian University. 2021.
  15. ^ Sharples, J.J., McRae, R.H.D., Weber, R.O., Mills, G.A. (2009) Foehn-like winds and fire danger anomalies in southeastern Australia. Proceedings of the 18th IMACS World Congress and MODSIM09. 13–17 July, Cairns.
  16. ^ Why is Sydney warmer after a cold front? Joel Pippard from Weatherzone. November 20, 2022. Retrieved November 20, 2022.
  17. ^ Foehn winds and fire danger anomalies over S.E. AUSTR Fire Note, Bushfire Cooperative Research Centre (Bushfire CRC) and the Australasian Fire and Emergency Service Authorities Council (AFAC). June 2010. Retrieved 5 June 2022.
  18. ^ Subtropical Foehn Winds, Southeast Queensland, Australia by Leon Wiesner, Hamish McGowan, Andrew Sturman and Tony Dale. Wiley Research DE&I Statement and Publishing Policies. July 2, 2024. Retrieved December 3, 2024.
  19. ^ NSW SES warns communities to brace for more damaging wind by Maitland Mercury. May 31 2022.
  20. ^ Cold, damaging winds blast Sydney by The Leader, 9 August 2019. Retrieved 22 April 2020
  21. ^ Sydney weather: Flights cancelled as wild winds set to batter NSW throughout weekend by Seven News, Saturday, 10 August 2019. Retrieved 22 April 2020
  22. ABC News Australia
    , 9 August 2019. Retrieved 22 April 2020
  23. ^ Sharples, J.J. (2009) An overview of mountain meteorological effects relevant to fire behaviour and bushfire risk. International Journal of Wildland Fire, 18, 737-754.
  24. ^ An Ill Wind: The Foehn in Leukerbad and Beyond Sarah Strauss. The Journal of the Royal Anthropological Institute Vol. 13, Wind, Life, Health: Anthropological and Historical Perspectives (2007)
  25. ^ Foehn effect Met Office
  26. Sydney Morning Herald
    . August 23 2012. Retrieved March 3 2022.
  27. ^ Weather map explainer: What are cold fronts, synoptic charts, isobars? by Debra Killalea from News.com.au. July 22, 2016. Retrieved November 15, 2021
  28. ^ Gabo Island's first September 32C in over a century of records by Ben Domensino from Weatherzone. 19 September 2023.
  29. Sydney Morning Herald
    . September 19, 2023. Retrieved 21 September 2023.
  30. SBS News
    . Retrieved 30 August 2024.
  31. ^ Ben Domensino (27 November 2024). "How Sydney Airport was the hottest place in the world on Wednesday". WeatherZone. Retrieved 27 November 2024.