DNA origami

Source: Wikipedia, the free encyclopedia.

This is an old revision of this page, as edited by WolfgangMueller1 (talk | contribs) at 19:07, 25 April 2024 (→‎Overview: removed word "current" and added emphasis on self assembly/bottom up manufacturing; previous edit 5 minutes ago also included adding a section on dynamic structures and chemical modifications). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

DNA origami object from viral DNA visualized by electron tomography.[1] The map is at the top and atomic model of the DNA colored below. (Deposited in EMDB EMD-2210)

DNA origami is the nanoscale folding of

nanoscale. The specificity of the interactions between complementary base pairs make DNA a useful construction material, through design of its base sequences.[2]
DNA is a well-understood material that is suitable for creating scaffolds that hold other molecules in place or to create structures all on its own.

DNA origami was the cover story of Nature on March 16, 2006.[3] Since then, DNA origami has progressed past an art form and has found a number of applications from drug delivery systems to uses as circuitry in plasmonic devices; however, most commercial applications remain in a concept or testing phase.[4]

Overview

The idea of using DNA as a construction material was first introduced in the early 1980s by

Paul Rothemund at the California Institute of Technology.[6] In contrast to common top-down fabrication methods such as 3D printing or lithography which involve depositing or removing material through a tool, DNA Nanotechnology, as well as DNA Origami as a subset, is a bottom-up fabrication method. By rationally designing the constituent subunits of the DNA polymer, DNA can self-assemble into a variety of shapes. The process of constructing DNA Origami involves the folding of a long single strand of viral DNA (typically the 7,249 bp genomic DNA of M13 bacteriophage) aided by multiple smaller "staple" strands. These shorter strands bind the longer in various places, resulting in the formation of a pre-defined two- or three-dimensional shape.[7] Examples include a smiley face and a coarse map of China and the Americas, along with many three-dimensional structures such as cubes.[8]

One of the advantages of using a DNA Origami nanostructure over an otherwise classified DNA nanostructure is the ease of defining finite structures [9]. In the design of some other DNA nanostructures, it can be impractical to design the extremely large number of individualized strands if the entire structure is composed of smaller strands. One method of bypassing the need for a huge number of different strands is to use repeating units, which comes with the disadvantage of a distribution of sizes and sometimes shapes. DNA Origami, however, forms discrete structures [9].

Applications for DNA Origami are primarily focused around the ability to exert fine control on systems, especially by constraining positions of molecules, typically by attachment to the DNA Origami nanostructures. Current applications are primarily focused around sensing and drug delivery, but many additional applications have been investigated.

To produce a desired shape, images are drawn with a

fluorescence microscopy when DNA is coupled to fluorescent materials.[6]

The process of fabricating DNA Origami
The process of fabricating DNA Origami

Bottom-up self-assembly methods are considered promising alternatives that offer cheap, parallel synthesis of nanostructures under relatively mild conditions.

Since the creation of this method, software was developed to assist the process using CAD software. This allows researchers to use a computer to determine the way to create the correct staples needed to form a certain shape. One such software called caDNAno is an open source software for creating such structures from DNA. The use of software has not only increased the ease of the process but has also drastically reduced the errors made by manual calculations.[10][5]

Dynamic Structures and Modifications

As in the broader field of DNA nanotechnology, DNA Origami may be made dynamic in nature through the use of a variety of methods. The three primary methods of creating a dynamic DNA Origami machine are toehold mediated strand displacement, enzymatic reactions, and base stacking [11]. While these methods are most commonly used, additional methods for creating dynamic DNA Origami machines exist, such as designing a directional component and using brownian motion to drive rotational movement of structures [12] or leveraging less commonly used DNA self-assembly phenomena like G-quadruplexes or i-motifs which can be pH sensitive. [13].

A DNA Origami Dynamic Machine using a directional component and brownian motion to generate rotation.

Modifications can be otherwise used to affect structural properties, to impart unique chemistry to the nanostructures, or to add stimuli responses to the nanostructures. Modifications to structures can be made through conjugation of molecules such as proteins, or through chemical modification of the DNA bases themselves. pH dependent responses, light dependent responses, and more have been shown through modified systems.

One example application of creating dynamic structures is the ability to have a stimuli response resulting in drug release, which is presented by several groups [14][15][16]. Other, less common applications comes in sensing moving mechanisms in vivo such as the unwinding of helicase[17].

Applications

Many potential applications have been suggested in literature, including enzyme immobilization, drug delivery systems, and nanotechnological self-assembly of materials. Though DNA is not the natural choice for building active structures for nanorobotic applications, due to its lack of structural and catalytic versatility, several papers have examined the possibility of molecular walkers on origami and switches for algorithmic computing.[8][18] The following paragraphs list some of the reported applications conducted in the laboratories with clinical potential.

Researchers at the Harvard University Wyss Institute reported the self-assembling and self-destructing drug delivery vessels using the DNA origami in the lab tests. The DNA nanorobot they created is an open DNA tube with a hinge on one side which can be clasped shut. The drug filled DNA tube is held shut by a DNA aptamer, configured to identify and seek certain diseased related protein. Once the origami nanobots get to the infected cells, the aptamers break apart and release the drug. The first disease model the researchers used was leukemia and lymphoma.[19]

Researchers in the National Center for Nanoscience and Technology in Beijing and Arizona State University reported a DNA origami delivery vehicle for Doxorubicin, a well-known anti-cancer drug. The drug was non-covalently attached to DNA origami nanostructures through intercalation and a high drug load was achieved. The DNA-Doxorubicin complex was taken up by human breast adenocarcinoma cancer cells (MCF-7) via cellular internalization with much higher efficiency than doxorubicin in free form. The enhancement of cell killing activity was observed not only in regular MCF-7, more importantly, also in doxorubicin-resistant cells. The scientists theorized that the doxorubicin-loaded DNA origami inhibits lysosomal acidification, resulting in cellular redistribution of the drug to action sites, thus increasing the cytotoxicity against the tumor cells.[20][21]

In a study conducted by a group of scientists from

iNANO center and CDNA Center at Aarhus university, researchers were able to construct a small multi-switchable 3D DNA Box Origami. The proposed nanoparticle was characterized by AFM, TEM and FRET. The constructed box was shown to have a unique reclosing mechanism, which enabled it to repeatedly open and close in response to a unique set of DNA or RNA keys. The authors proposed that this "DNA device can potentially be used for a broad range of applications such as controlling the function of single molecules, controlled drug delivery, and molecular computing.".[22]

Nanorobots made of DNA origami demonstrated computing capacities and completed pre-programmed task inside the living organism was reported by a team of bioengineers at Wyss Institute at Harvard University and Institute of Nanotechnology and Advanced Materials at

fluorescent markers) into live cockroaches. By tracking the markers inside the cockroaches, the team found the accuracy of delivery of the molecules (released by the uncurled DNA) in target cells, the interactions among the nanobots and the control are equivalent to a computer system. The complexity of the logic operations, the decisions and actions, increases with the increased number of nanobots. The team estimated that the computing power in the cockroach can be scaled up to that of an 8-bit computer.[23][24]

DNA is folded into an octahedron and coated with a single bilayer of phospholipid, mimicking the envelope of a virus particle. The DNA nanoparticles, each at about the size of a virion, are able to remain in circulation for hours after injected into mice. It also elicits much lower immune response than the uncoated particles. It presents a potential use in drug delivery, reported by researchers in Wyss Institute at Harvard University.[25][26]

A research group at the Indian Institute of Science used nanostructures to develop a platform to elucidate the coaxial stacking between DNA bases. This approach utilized DNA-PAINT based super-resolution microscopy for visualizing these DNA nanostructures and performed DNA binding kinetics analysis to elucidate the fundamental force of base-stacking that helps stabilize the DNA double helical structure. They went on to assemble multimeric DNA origami nanostructures termed as a 'three-point star' into a tetrahedral 3D origami structure. The assembly relied chiefly on base-stacking interactions between each subunit. The group further showed that the knowledge of such interactions can be used to predict and thus tune the relative stabilities of these multimeric DNA nanostructures.[27]

Similar approaches

The idea of using protein design to accomplish the same goals as DNA origami has surfaced as well. Researchers at the National Institute of Chemistry in Slovenia are working on using rational design of protein folding to create structures much like those seen with DNA origami. The main focus of current research in protein folding design is in the drug delivery field, using antibodies attached to proteins as a way to create a targeted vehicle.[28][29]

See also

References

  1. PMID 23169645
    .
  2. .
  3. .
  4. .
  5. ^ .
  6. ^ .
  7. .
  8. ^ .
  9. ^
    doi:10.1038/natrevmats.2017.68. {{cite journal}}: Check date values in: |date= (help
    )
  10. .
  11. .
  12. ^ {{Cite journal|last1=Pumm|first1=Anna-Katharina|last2=Engelen|first2=Wouter|last3=Enzo|first3=Kopperger|last4=Isensee|first4=Jonas|last5=Vogt|first5=Matthias|last6=Kozina|first6=Viktorija|last7=Kube|first7=Massimo|last8=Honemann|first8=Maximilian N.|last9=Bertosin|first9=Eva|last10=Langecker|first10=Martin|last11=Golestanian|first11=Ramin|last12=Simmel|first12=Friedrich C.|last13=Dietz|first13=Hendrik|date=2022-07-20|title=A DNA origami rotary ratchet motor |journal=Nature|language=en|volume=607|pages=492–498|doi=10.1038/s41586-022-04910-y}
  13. .
  14. ^ Cite error: The named reference :4 was invoked but never defined (see the help page).
  15. ^ Bujold, Katherine E.; Hsu, John C. C.; Sleiman, Hanadi F. (2016-10-04). "Optimized DNA "Nanosuitcases" for Encapsulation and Conditional Release of siRNA". ACS Publications. 138 (42): 14030–14038.
  16. ^ Afonin, Kirill A.; Dobrovolskaia, Marina A.; Church, George; Bathe, Mark (2020-07-24). "Opportunities, Barriers, and a Strategy for Overcoming Translational Challenges to Therapeutic Nucleic Acid Nanotechnology". ACS Publications. 14 (2): 9221–9227.
  17. ^ Kosuri, Pallav; Altheimer, Benjamin D.; Dai, Mingjie; Zhuang, Xiaowei (2019-07-17). "Rotation tracking of genome-processing enzymes using DNA origami rotors". Nature. 572 (136–140).
  18. ^ DNA 'organises itself' on silicon,BBC News, August 17, 2009
  19. ^ Garde, Damian (May 15, 2012). "DNA origami could allow for 'autonomous' delivery". fiercedrugdelivery.com. Archived from the original on September 24, 2015. Retrieved May 25, 2012.
  20. ^ "Folded DNA becomes Trojan horse to attack cancer". New Scientist. 18 August 2012. Retrieved 22 August 2012.
  21. PMID 22803823
    .
  22. .
  23. . Retrieved 9 June 2014.
  24. .
  25. ^ Gibney, Michael (23 April 2014). "DNA nanocages that act like viruses bypass the immune system to deliver drugs". fiercedrugdelivery.com. Archived from the original on 20 September 2015. Retrieved 19 June 2014.
  26. PMID 24694301
    .
  27. .
  28. .
  29. .

Further reading