T-norm

Source: Wikipedia, the free encyclopedia.

In

multi-valued logic, specifically in fuzzy logic. A t-norm generalizes intersection in a lattice and conjunction in logic. The name triangular norm refers to the fact that in the framework of probabilistic metric spaces t-norms are used to generalize the triangle inequality of ordinary metric spaces
.

Definition

A t-norm is a function T: [0, 1] × [0, 1] → [0, 1] that satisfies the following properties:

  • Commutativity
    : T(a, b) = T(b, a)
  • Monotonicity
    : T(a, b) ≤ T(c, d) if ac and bd
  • Associativity
    : T(a, T(b, c)) = T(T(a, b), c)
  • The number 1 acts as identity element: T(a, 1) = a

Since a t-norm is a binary algebraic operation on the interval [0, 1], infix algebraic notation is also common, with the t-norm usually denoted by .

The defining conditions of the t-norm are exactly those of a

ordered group
.) The monoidal operation of any partially ordered abelian monoid L is therefore by some authors called a triangular norm on L.

Classification of t-norms

A t-norm is called continuous if it is continuous as a function, in the usual interval topology on [0, 1]2. (Similarly for left- and right-continuity.)

A t-norm is called strict if it is continuous and strictly monotone.

A t-norm is called nilpotent if it is continuous and each x in the open interval (0, 1) is nilpotent, that is, there is a natural number n such that x ... x (n times) equals 0.

A t-norm is called Archimedean if it has the Archimedean property, that is, if for each x, y in the open interval (0, 1) there is a natural number n such that x ... x (n times) is less than or equal to y.

The usual partial ordering of t-norms is pointwise, that is,

T1 ≤ T2   if   T1(a, b) ≤ T2(a, b) for all a, b in [0, 1].

As functions, pointwise larger t-norms are sometimes called stronger than those pointwise smaller. In the semantics of fuzzy logic, however, the larger a t-norm, the weaker (in terms of logical strength) conjunction it represents.

Prominent examples

Graph of the minimum t-norm (3D and contours)
  • Minimum t-norm also called the Gödel t-norm, as it is the standard semantics for conjunction in
    Gödel fuzzy logic. Besides that, it occurs in most t-norm based fuzzy logics as the standard semantics for weak conjunction. It is the pointwise largest t-norm (see the properties of t-norms
    below).
Graph of the product t-norm
  • Product t-norm (the ordinary product of real numbers). Besides other uses, the product t-norm is the standard semantics for strong conjunction in
    product fuzzy logic
    . It is a strict Archimedean t-norm.
Graph of the Łukasiewicz t-norm
  • Łukasiewicz t-norm The name comes from the fact that the t-norm is the standard semantics for strong conjunction in
    Łukasiewicz fuzzy logic
    . It is a nilpotent Archimedean t-norm, pointwise smaller than the product t-norm.
Graph of the drastic t-norm. The function is discontinuous at the lines 0 < x = 1 and 0 < y = 1.
  • Drastic t-norm
The name reflects the fact that the drastic t-norm is the pointwise smallest t-norm (see the properties of t-norms below). It is a right-continuous Archimedean t-norm.
Graph of the nilpotent minimum. The function is discontinuous at the line 0 < x = 1 − y < 1.
  • Nilpotent minimum
is a standard example of a t-norm that is left-continuous, but not continuous. Despite its name, the nilpotent minimum is not a nilpotent t-norm.
Graph of the Hamacher product
  • Hamacher product
is a strict Archimedean t-norm, and an important representative of the parametric classes of Hamacher t-norms and Schweizer–Sklar t-norms.

Properties of t-norms

The drastic t-norm is the pointwise smallest t-norm and the minimum is the pointwise largest t-norm:

for any t-norm and all a, b in [0, 1].

For every t-norm T, the number 0 acts as null element: T(a, 0) = 0 for all a in [0, 1].

A t-norm T has

nilpotent
elements; each nilpotent element of T is also a zero divisor of T. The set of all nilpotent elements is an interval [0, a] or [0, a), for some a in [0, 1].

Properties of continuous t-norms

Although real functions of two variables can be continuous in each variable without being continuous on [0, 1]2, this is not the case with t-norms: a t-norm T is continuous if and only if it is continuous in one variable, i.e., if and only if the functions fy(x) = T(x, y) are continuous for each y in [0, 1]. Analogous theorems hold for left- and right-continuity of a t-norm.

A continuous t-norm is Archimedean if and only if 0 and 1 are its only

idempotents
.

A continuous Archimedean t-norm is strict if 0 is its only nilpotent element; otherwise it is nilpotent. By definition, moreover, a continuous Archimedean t-norm T is nilpotent if and only if each x < 1 is a nilpotent element of T. Thus with a continuous Archimedean t-norm T, either all or none of the elements of (0, 1) are nilpotent. If it is the case that all elements in (0, 1) are nilpotent, then the t-norm is isomorphic to the Łukasiewicz t-norm; i.e., there is a strictly increasing function f such that

If on the other hand it is the case that there are no nilpotent elements of T, the t-norm is isomorphic to the product t-norm. In other words, all nilpotent t-norms are isomorphic, the Łukasiewicz t-norm being their prototypical representative; and all strict t-norms are isomorphic, with the product t-norm as their prototypical example. The Łukasiewicz t-norm is itself isomorphic to the product t-norm undercut at 0.25, i.e., to the function p(xy) = max(0.25, x · y) on [0.25, 1]2.

For each continuous t-norm, the set of its idempotents is a closed subset of [0, 1]. Its complement—the set of all elements that are not idempotent—is therefore a union of countably many non-overlapping open intervals. The restriction of the t-norm to any of these intervals (including its endpoints) is Archimedean, and thus isomorphic either to the Łukasiewicz t-norm or the product t-norm. For such x, y that do not fall into the same open interval of non-idempotents, the t-norm evaluates to the minimum of x and y. These conditions actually give a characterization of continuous t-norms, called the Mostert–Shields theorem, since every continuous t-norm can in this way be decomposed, and the described construction always yields a continuous t-norm. The theorem can also be formulated as follows:

A t-norm is continuous if and only if it is isomorphic to an ordinal sum of the minimum, Łukasiewicz, and product t-norm.

A similar characterization theorem for non-continuous t-norms is not known (not even for left-continuous ones), only some non-exhaustive methods for the construction of t-norms have been found.

Residuum

For any left-continuous t-norm , there is a unique binary operation on [0, 1] such that

if and only if

for all x, y, z in [0, 1]. This operation is called the residuum of the t-norm. In prefix notation, the residuum of a t-norm is often denoted by or by the letter R.

The interval [0, 1] equipped with a t-norm and its residuum forms a residuated lattice. The relation between a t-norm T and its residuum R is an instance of adjunction (specifically, a Galois connection): the residuum forms a right adjoint R(x, –) to the functor T(–, x) for each x in the lattice [0, 1] taken as a poset category.

In the standard semantics of t-norm based fuzzy logics, where conjunction is interpreted by a t-norm, the residuum plays the role of implication (often called R-implication).

Basic properties of residua

If is the residuum of a left-continuous t-norm , then

Consequently, for all x, y in the unit interval,

if and only if

and

If is a left-continuous t-norm and its residuum, then

If is continuous, then equality holds in the former.

Residua of common left-continuous t-norms

If xy, then R(x, y) = 1 for any residuum R. The following table therefore gives the values of prominent residua only for x > y.

Residuum of the Name Value for x > y Graph
Minimum t-norm Standard Gödel implication y
Standard Gödel implication. The function is discontinuous at the line y = x < 1.
Product t-norm Goguen implication y / x
Goguen implication. The function is discontinuous at the point x = y = 0.
Łukasiewicz t-norm Standard Łukasiewicz implication 1 – x + y
Standard Łukasiewicz implication.
Nilpotent minimum Fodor implication max(1 – x, y)
Residuum of the nilpotent minimum. The function is discontinuous at the line 0 < y = x < 1.

T-conorms

T-conorms (also called S-norms) are dual to t-norms under the order-reversing operation that assigns 1 – x to x on [0, 1]. Given a t-norm , the complementary conorm is defined by

This generalizes De Morgan's laws.

It follows that a t-conorm satisfies the following conditions, which can be used for an equivalent axiomatic definition of t-conorms independently of t-norms:

  • Commutativity: ⊥(a, b) = ⊥(b, a)
  • Monotonicity: ⊥(a, b) ≤ ⊥(c, d) if ac and bd
  • Associativity: ⊥(a, ⊥(b, c)) = ⊥(⊥(a, b), c)
  • Identity element: ⊥(a, 0) = a

T-conorms are used to represent

fuzzy set theory
.

Examples of t-conorms

Important t-conorms are those dual to prominent t-norms:

Graph of the maximum t-conorm (3D and contours)
  • Maximum t-conorm , dual to the minimum t-norm, is the smallest t-conorm (see the
    Gödel fuzzy logic
    and for weak disjunction in all t-norm based fuzzy logics.
Graph of the probabilistic sum
  • Probabilistic sum is dual to the product t-norm. In
    product fuzzy logic
    in which it is definable (e.g., those containing involutive negation).
Graph of the bounded sum t-conorm
  • Bounded sum is dual to the Łukasiewicz t-norm. It is the standard semantics for strong disjunction in
    Łukasiewicz fuzzy logic
    .
Graph of the drastic t-conorm. The function is discontinuous at the lines 1 > x = 0 and 1 > y = 0.
  • Drastic t-conorm
dual to the drastic t-norm, is the largest t-conorm (see the properties of t-conorms below).
Graph of the nilpotent maximum. The function is discontinuous at the line 0 < x = 1 – y < 1.
  • Nilpotent maximum, dual to the nilpotent minimum:
Graph of the Einstein sum
is a dual to one of the Hamacher t-norms.

Properties of t-conorms

Many properties of t-conorms can be obtained by dualizing the properties of t-norms, for example:

  • For any t-conorm ⊥, the number 1 is an annihilating element: ⊥(a, 1) = 1, for any a in [0, 1].
  • Dually to t-norms, all t-conorms are bounded by the maximum and the drastic t-conorm:
, for any t-conorm and all a, b in [0, 1].

Further properties result from the relationships between t-norms and t-conorms or their interplay with other operators, e.g.:

  • A t-norm T
    distributes
    over a t-conorm ⊥, i.e.,
T(x, ⊥(y, z)) = ⊥(T(x, y), T(x, z)) for all x, y, z in [0, 1],
if and only if ⊥ is the maximum t-conorm. Dually, any t-conorm distributes over the minimum, but not over any other t-norm.

Non-standard negators

A negator is a monotonically decreasing mapping such that and . A negator n is called

  • strict in case of strict monotonocity, and
  • strong if it is strict and involutive, that is, for all in [0, 1].

The standard (canonical) negator is , which is both strict and strong. As the standard negator is used in the above definition of a t-norm/t-conorm pair, this can be generalized as follows:

A De Morgan triplet is a triple (T,⊥,n) such that[1]

  1. T is a t-norm
  2. ⊥ is a t-conorm according to the axiomatic definition of t-conorms as mentioned above
  3. n is a strong negator
  4. .

See also

References

  1. ^ Ismat Beg, Samina Ashraf: Similarity measures for fuzzy sets, at: Applied and Computational Mathematics, March 2009, available on Research Gate since November 23rd, 2016
  • Klement, Erich Peter; Mesiar, Radko; and Pap, Endre (2000), Triangular Norms. Dordrecht: Kluwer. .
  • Cignoli, Roberto L.O.;
  • Fodor, János (2004), "Left-continuous t-norms in fuzzy logic: An overview". Acta Polytechnica Hungarica 1(2),
This page is based on the copyrighted Wikipedia article: T-norm. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy