Triptycene

Source: Wikipedia, the free encyclopedia.
Triptycene
Skeletal formula
Space-filling model
Names
Preferred IUPAC name
9,10-Dihydro-9,10-[1,2]benzenoanthracene
Identifiers
3D model (
JSmol
)
ChemSpider
ECHA InfoCard
100.006.837 Edit this at Wikidata
EC Number
  • 207-519-3
UNII
  • InChI=1S/C20H14/c1-2-8-14-13(7-1)19-15-9-3-5-11-17(15)20(14)18-12-6-4-10-16(18)19/h1-12,19-20H ☒N
    Key: NGDCLPXRKSWRPY-UHFFFAOYSA-N ☒N
  • C12=CC=CC=C1C3C5=C(C=CC=C5)C2C4=C3C=CC=C4
Properties
C20H14
Molar mass 254.332 g·mol−1
Density 1.197 g/cm3
Melting point 252 to 256 °C (486 to 493 °F; 525 to 529 K)
Boiling point 371.8 °C (701.2 °F; 645.0 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Triptycene is an

paddle-wheel configuration with D3h symmetry. It is named after the medieval three-piece art panel, the triptych.[1] Several substituted triptycenes are known. Barrelenes are structurally related. Due to the rigid framework and three-dimensional geometry, derivatives of triptycene have been well researched.[2]

Synthesis

The parent triptycene was first prepared in 1942 by a multistep method.

In this method, benzyne is generated by the reaction of magnesium and 2-bromofluorobenzene.

Derivatives and applications

The hydrocarbon framework is very rigid and triptycene derivatives such as triptycene

.

For example, a bis(diphenylphosphino) derivative was used as a

phosphine ligand on nickel in a highly selective hydrocyanation reaction of butadiene.[6]
The reactivity of this catalyst is attributed to the large
bidentate
ligand supported by the triptycene framework.

References

External links