Ursodoxicoltaurine

Source: Wikipedia, the free encyclopedia.

Ursodoxicoltaurine
Names
IUPAC name
2-(3α,7β-Dihydroxy-5β-cholan-24-amido)ethane-1-sulfonic acid
Systematic IUPAC name
2-{(4R)-4-[(1R,3aS,3bR,4S,5aS,7R,9aS,9bS,11aR)-4,7-Dihydroxy-9a,11a-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-1-yl]pentanamido}ethane-1-sulfonic acid
Other names
Tauroursodeoxycholic acid; TUDCA; 3α,7β-Dihydroxy-5β-cholanoyltaurine; UR 906; Ursodeoxycholyltaurine; Taurursodiol
Identifiers
3D model (
JSmol
)
ChEBI
ChEMBL
ChemSpider
IUPHAR/BPS
KEGG
UNII
  • InChI=1S/C26H45NO6S/c1-16(4-7-23(30)27-12-13-34(31,32)33)19-5-6-20-24-21(9-11-26(19,20)3)25(2)10-8-18(28)14-17(25)15-22(24)29/h16-22,24,28-29H,4-15H2,1-3H3,(H,27,30)(H,31,32,33)/t16-,17+,18-,19-,20+,21+,22+,24+,25+,26-/m1/s1 checkY
    Key: BHTRKEVKTKCXOH-LBSADWJPSA-N checkY
  • InChI=1/C26H45NO6S/c1-16(4-7-23(30)27-12-13-34(31,32)33)19-5-6-20-24-21(9-11-26(19,20)3)25(2)10-8-18(28)14-17(25)15-22(24)29/h16-22,24,28-29H,4-15H2,1-3H3,(H,27,30)(H,31,32,33)/t16-,17+,18-,19-,20+,21+,22+,24+,25+,26-/m1/s1
    Key: BHTRKEVKTKCXOH-LBSADWJPBX
  • C[C@H](CCC( = O)NCCS( = O)( = O)O)[C@H]1CC[C@@H]2[C@@]1(CC[C@H]3[C@H]2[C@H](C[C@H]4[C@@]3(CC[C@H](C4)O)C)O)C
Properties
C26H45NO6S
Molar mass 499.71 g·mol−1
Pharmacology
A05AA05 (WHO)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Ursodoxicoltaurine is the international nonproprietary name (INN) for the pharmaceutical form of tauroursodeoxycholic acid (TUDCA). It is also known as taurursodiol. Tauroursodeoxycholic acid is a naturally occurring hydrophilic bile acid which is the taurine conjugated form of ursodeoxycholic acid (UDCA). Humans have only trace amounts of tauroursodeoxycholic acid but bears have large amounts of tauroursodeoxycholic acid and ursodeoxycholic acid in their bile.[1]

Synthesis

Bile acids are naturally synthesized from

Asiatic bears.[1][3]
Ursodeoxycholic acid and tauroursodeoxycholic acid were first chemically synthesized in 1954 in Japan.

Medical uses

In Canada and the United States,

Cellular mechanisms

Apoptosis is largely influenced by the

TGR5, S1PR2 and α5β1-Integrin.[8]

Tauroursodeoxycholic acid also acts as a

chemical chaperone to help maintain the stability and correct folding of proteins.[9]

Research

Ursodoxicoltaurine has been shown to reduce apoptosis and to have protective effects in neurodegenerative diseases and the eye, particularly for retinal degenerative disorders.[9][10]

Studies have shown that tauroursodeoxycholic acid has neuroprotective actions based on its potent ability to inhibit apoptosis, attenuate oxidative stress, and reduce endoplasmic reticulum stress in different experimental models of these illnesses.[8]

Studies have shown protective effects of tauroursodeoxycholic acid in eye diseases.[10]

Photoreceptor cells

A study examined the effects of tauroursodeoxycholic acid on

retinal rods and cones undergo apoptosis. Mice models were used, a wild-type and a mutant RP model, rd10. Both models were injected with tauroursodeoxycholic acid every 3 days from post-natal day 6 (p6) to p30 and compared to the vehicle. Electroretinography (ERG), photoreceptor cell counts, cone photoreceptor nuclei counts, and TUNEL labeling were all analyzed to show the effects of ursodoxicoltaurine. The dark-adapted and light-adapted ERG responses were greater in the ursodoxicoltaurine treated mouse than the vehicle treated mouse. Ursodoxicoltaurine treated mice also had more photoreceptor counts, yet non-altered retinal morphology or function. Even at P30, a stage where rod and cone function is usually greatly diminished in the rd10 mouse model, the photoreceptor function was protected.[11]

Another study, from the Department of Ophthalmology at

superoxide radicals, rod cell death, and disruption of cone inner and outer segments. The findings of the study are elucidating optimized conditions for RP treatment.[12]

Choroidal neovascularization

A study done at the Department of Ophthalmology at

control group, whereas no effect in the UDCA treated group. ursodoxicoltaurine and UDCA may suppress CNV formation, which may be associated with its anti-inflammatory effects.[13]

Synaptic connectivity

A study from the Department of Physiology in

horizontal cells were preserved in the ursodoxicoltaurine treated P23H rats. Additionally, the synaptic terminals in the outer plexiform layer were of greater density that in control rats. The neuroprotective effects of ursodoxicoltaurine are not only preserving retinal morphology and function, but also its synaptic contacts, a potentially useful aspect in delaying RP.[14]

Other diseases

Tauroursodeoxycholic acid has also been suggested to have potential application in heart disease,

amyotrophic lateral sclerosis and stroke in view of the drug's ability to reduce apoptotic effects.[9][8][15][7]

References