Vopěnka's principle

Source: Wikipedia, the free encyclopedia.

In mathematics, Vopěnka's principle is a large cardinal axiom. The intuition behind the axiom is that the set-theoretical universe is so large that in every

elementary embeddings
.

Vopěnka's principle was first introduced by

H. Jerome Keisler, and was written up by Solovay, Reinhardt & Kanamori (1978)
. According to Pudlák (2013, p. 204), Vopěnka's principle was originally intended as a joke: Vopěnka was apparently unenthusiastic about large cardinals and introduced his principle as a bogus large cardinal property, planning to show later that it was not consistent. However, before publishing his inconsistency proof he found a flaw in it.

Definition

Vopěnka's principle asserts that for every

elementarily embeddable into another. This cannot be stated as a single sentence of ZFC as it involves a quantification over classes. A cardinal κ is called a Vopěnka cardinal if it is inaccessible
and Vopěnka's principle holds in the rank Vκ (allowing arbitrary SVκ as "classes"). [1]

Many equivalent formulations are possible. For example, Vopěnka's principle is equivalent to each of the following statements.

  • For every proper class of simple directed graphs, there are two members of the class with a homomorphism between them.[2]
  • For any signature Σ and any proper class of Σ-structures, there are two members of the class with an elementary embedding between them.[1][2]
  • For every predicate P and proper class S of ordinals, there is a non-trivial elementary embedding j:(Vκ, ∈, P) → (Vλ, ∈, P) for some κ and λ in S.[1]
  • The category of ordinals cannot be fully embedded in the category of graphs.[2]
  • Every subfunctor of an accessible functor is accessible.[2]
  • (In a definable classes setting) For every natural number n, there exists a C(n)-extendible cardinal.[3]

Strength

Even when restricted to predicates and proper classes definable in first order set theory, the principle implies existence of Σn correct extendible cardinals for every n.

If κ is an almost huge cardinal, then a strong form of Vopěnka's principle holds in Vκ:

There is a κ-complete
ultrafilter
U such that for every {Ri: i < κ} where each Ri is a binary relation and RiVκ, there is S ∈ U and a non-trivial elementary embedding j: RaRb for every a < b in S.

References

  1. ^ .
  2. ^
    ISBN 0521422612.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  3. .

External links