Число пересечений (теория узлов)

Материал из Википедии — свободной энциклопедии
Трилистник без симметрии 3-го порядка с помеченными пересечениями
Таблица всех простых узлов с семью или меньше пересечениями (зеркальные варианты не включены)

В теории узлов число пересечений узла — это наименьшее число пересечений на любой диаграмме узла. Число пересечений является инвариантом узла.

Примеры

В качестве примера: тривиальный узел имеет нулевое число пересечений, число пересечений трилистника равно трём, а число пересечений восьмёрки равно четырём. Больше нет узлов с числом пересечений четыре и меньше, и есть только два узла с числом пересечений пять, но число узлов с конкретными числами пересечений быстро растёт по мере роста числа пересечений.

Таблицы

Таблицы

Тэта, опубликовавшего таблицу в 1877 году[1]
.

Аддитивность

Имеется очень малый прогресс в понимании поведения числа пересечений при элементарных операциях на узлах. Большой открытый вопрос — является ли число пересечений аддитивной по отношению к операции конкатенации. Также ожидается, что сателлитный узел узла K будет иметь большее число пересечений, чем K, но это не доказано.

Аддитивность числа пересечений конкатенации узлов доказана для специальных случаев, например, если исходные узлы являются альтернированными[2] или если исходные узлы являются торическими[3][4]. Марк Лакенбай дал доказательство, что существует константа N > 1, такая что , но его метод, использующий нормальные поверхности[англ.], не может улучшить N до 1[5].

Приложение в биоинформатике

Имеется странная связь между числом пересечений узла и физическим поведением узлов ДНК. Для простых узлов ДНК число пересечений является хорошим предсказателем относительной скорости узла ДНК электрофореза геля агарозы. В основном, более высокое число пересечений приводит к большей относительной скорости[6].

Связанные инварианты

Имеются связанные понятия среднего числа пересечений[англ.] и асимптотического числа пересечений. Оба этих понятия определяют границы стандартного числа пересечений. Есть гипотеза, что асимптотическое число пересечений равно числу пересечений.

Другие числовые инварианты узла включают

число отрезков и число распутывания
.

Примечания

  1. Tait, 1898, с. 273—347.
  2. Adams, 2004, с. 69.
  3. Gruber, 2003.
  4. Diao, 2004, с. 857–866.
  5. Lackenby, 2009, с. 747—768.
  6. Jonathan, 1996, с. 39—58.

Литература

  • Simon Jonathan. Energy functions for knots: Beginning to predict physical behavior // Mathematical Approaches to Biomolecular Structure and Dynamics / Jill P. Mesirov, Klaus Schulten, De Witt Sumners. — 1996. — Т. 82. — (The IMA Volumes in Mathematics and its Applications). — .
  • P. G. Tait. On Knots I, II, III // Scientific papers. — Cambridge University Press, 1898. — Т. 1.
  • C. A. Adams. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. — American Mathematical Society, 2004. — ISBN 9780821836781.
  • H. Gruber. Estimates for the minimal crossing number. — 2003. — arXiv:math/0303273.
  • Yuanan Diao. The additivity of crossing numbers // Journal of Knot Theory and its Ramifications. — 2004. — Т. 13, вып. 7. — .
  • Marc Lackenby. The crossing number of composite knots // Journal of Topology. — 2009. — Т. 2, вып. 4. — .