2005 VX3

Source: Wikipedia, the free encyclopedia.

2005 VX3
Discovery
Perihelion
4.1058 AU
914.86 AU
Eccentricity0.9955
27,672 yr
0.1730°
0° 0m 0s / day
Inclination112.22°
255.35°
196.37°
Jupiter MOID0.8884 AU
TJupiter−0.9430
Physical characteristics
Mean diameter
km (est.)[4]
0.09 (assumed)[4]
14.1[1][3]

2005 VX3 is

eccentricity of any known minor planet
.

Description

2005 VX3 orbits the Sun at a distance of 4.1–1,826 

retrograde orbit and its low Tisserand parameter (TJupiter of −0.9430).[3] It is a Jupiter-, Saturn-, Uranus-, and Neptune-crosser. The body's observation arc begins with its first observation by the Mount Lemmon Survey on 1 November 2005.[1]

Orbital evolution — Barycentric elements
Year[7]
(epoch)
Aphelion Semimajor-axis Ref
1950 2710 AU n.a. [a]
2012 1914 AU n.a. [b]
2015 2563 AU n.a. [c]
2016 3235 AU n.a. [d]
2050 2049 AU 1026 AU [a]

2005 VX3 has a

2012 DR30 have a larger barycentric semi-major axis. The epoch
of January 2016 was when 2005 VX3 had its largest heliocentric semi-major axis.

The object has a short

dormant comet that has not been seen outgassing. In the past it may have made closer approaches to the Sun that could have removed most near-surface volatiles. The current orbit crosses the ecliptic just inside Jupiter's orbit and has a Jupiter-MOID of 0.8 AU.[3]

In 2017, it had an

opposition
in mid-June. It would require one of the largest telescopes in the world for any more follow-up observations.

Comparison

The orbits of Sedna, 2012 VP113, Leleākūhonua, and other very distant objects along with the predicted orbit of Planet Nine. The three sednoids (pink) along with the red-colored extreme trans-Neptunian object (eTNO) orbits are suspected to be aligned against the hypothetical Planet Nine while the blue-colored eTNO orbits are aligned. The highly elongated orbits colored brown include centaurs and damocloids with large aphelion distances over 200 AU.

See also

Notes

  1. ^
    barycentric coordinates are more stable than heliocentric coordinates.[8] Using JPL Horizons, the barycentric semi-major axis is approximately 1026 AU.[7]
  2. ^ a b Archived JPL Small-Body Database Browser: (2005 VX3) from 13 December 2012. JPL Epoch 2012 orbital solution that has aphelion (Q)=1914 AU.
  3. ^ a b Archived MPC object data for (2005 VX3) from Minor Planet Center archive of Epoch 2015-06-27 with aphelion (Q) of 2563 AU.
  4. ^ a b Archived MPC object data for (2005 VX3) from JPL Webcite archive of Epoch 2016-Jan-13 with aphelion (Q) of 3235AU.
  5. ^ Archived MPC object data for (2005 VX3) from 8 March 2014.

References

  1. ^ a b c d "2005 VX3". Minor Planet Center. Retrieved 20 November 2018.
  2. IAU Minor Planet Center
    . 8 November 2005. Retrieved 20 November 2018. (K05V03X)
  3. ^ a b c d e f g "JPL Small-Body Database Browser: (2005 VX3)" (2006-01-21 last obs.). Jet Propulsion Laboratory. Retrieved 20 November 2018.
  4. ^ a b c d Johnston, Wm. Robert (7 October 2018). "List of Known Trans-Neptunian Objects". Johnston's Archive. Retrieved 19 November 2018.
  5. ^ "List Of Other Unusual Objects". Minor Planet Center. 14 November 2018. Retrieved 19 November 2018.
  6. JPL Solar System Dynamics
    . Retrieved 6 March 2014. (Epoch defined at will change every 6 months or so)
  7. ^
    barycentric coordinates
    . Select Ephemeris Type:Elements and Center:@0)
  8. S2CID 16987581
    .

External links