Acridine orange

Source: Wikipedia, the free encyclopedia.
Acridine orange
Acridine orange
Ball-and-stick model of the acridine orange freebase molecule
Names
Preferred IUPAC name
N,N,N′,N′-Tetramethylacridine-3,6-diamine
Systematic IUPAC name
3-N,3-N,6-N,6-N-Tetramethylacridine-3,6-diamine
Other names
3,6-Acridinediamine

Acridine Orange Base
Acridine Orange NO
Basic Orange 14
Euchrysine
Rhoduline Orange
Rhoduline Orange N
Rhoduline Orange NO
Solvent Orange 15

Waxoline Orange A
Identifiers
3D model (
JSmol
)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard
100.122.153 Edit this at Wikidata
EC Number
  • 200-614-0
KEGG
MeSH Acridine+orange
RTECS number
  • AR7601000
UNII
  • InChI=1S/C17H19N3/c1-19(2)14-7-5-12-9-13-6-8-15(20(3)4)11-17(13)18-16(12)10-14/h5-11H,1-4H3 checkY
    Key: DPKHZNPWBDQZCN-UHFFFAOYSA-N checkY
  • InChI=1/C17H19N3/c1-19(2)14-7-5-12-9-13-6-8-15(20(3)4)11-17(13)18-16(12)10-14/h5-11H,1-4H3
    Key: DPKHZNPWBDQZCN-UHFFFAOYAJ
  • n1c3c(cc2c1cc(N(C)C)cc2)ccc(c3)N(C)C
Properties
C17H19N3
Molar mass 265.360 g·mol−1
Appearance Orange powder
Hazards
GHS labelling:
GHS06: ToxicGHS07: Exclamation mark
Warning
H302, H312, H341
P281, P304+P340
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Acridine orange is an

lysosomes and phagolysosomes that are membrane-bound organelles essential for acid hydrolysis or for producing products of phagocytosis of apoptotic cells. Acridine orange is used in epifluorescence microscopy and flow cytometry. The ability to penetrate the cell membranes of acidic organelles and cationic properties of acridine orange allows the dye to differentiate between various types of cells (i.e., bacterial cells and white blood cells). The shift in maximum excitation and emission wavelengths provides a foundation to predict the wavelength at which the cells will stain.[1]

Optical properties

When the pH of the environment is 3.5, acridine orange becomes excited by blue light (460 nm). When acridine orange is excited by blue light, the fluorescent dye can differentially stain human cells green and prokaryotic cells orange (600 nm), allowing for rapid detection with a fluorescent microscope. The differential staining capability of acridine orange provides quick scanning of specimen smears at lower magnifications of 400x compared to Gram stains that operate at 1000x magnification. The differentiation of cells is aided by a dark background that allows colored organisms to be easily detected. The sharp contrast provides a mechanism for counting the number of organisms present in a sample. When acridine orange binds to DNA, the dye exhibits a maximum excitation at 502 nm producing a maximum emission of 525 nm. When bound to RNA, acridine orange displays a maximum emission value of 650 nm and a maximum excitation value of 460 nm. The maximum excitation and emission value that occur when acridine orange is bound to RNA are the result of electrostatic interactions and the intercalation between the acridine molecule and nucleic acid-base pairs present within RNA and DNA.[2]

Preparation

Acridine dyes are prepared via the condensation of

1,3-diaminobenzene with suitable benzaldehydes. Acridine orange is derived from dimethylaminobenzaldehyde and N,N-dimethyl-1,3-diaminobenzene.[3] It may also be prepared by the Eschweiler–Clarke reaction
of 3,6-Acridinediamine.

History

Acridine orange is derived from the organic molecule acridine, which was first discovered by Carl Grabe and Heinrich Caro, who isolated acridine by boiling coal in Germany during the late nineteenth century. Acridine has antimicrobial factors useful in drug-resistant bacteria and isolating bacteria in various environments.[4] Acridine orange in the mid-twentieth century was used to examine the microbial content found in soil and direct counts of aquatic bacteria. Additionally, the method of acridine orange direct count (AODC) proved useful in the enumeration of bacteria found within landfills. Direct epifluorescent filter technique (DEFT) using acridine orange is a method known for examining the microbial content within food and water. The use of acridine orange in clinical applications has become widely accepted, mainly focusing on highlighting bacteria in blood cultures. Past and present studies comparing acridine orange staining with blind subcultures for the detection of positive blood cultures showed that the acridine orange is a simple, inexpensive, rapid staining procedure that appears to be more sensitive than the Gram stain for detecting microorganisms in cerebrospinal fluid and other clinical and non-clinical materials.[3]

Applications

Acridine orange has been widely accepted and used in many different areas, such as epifluorescence microscopy, and the assessment of

DNA damage in infertile sperm cells.[7] Acridine orange is recommended for the use of fluorescent microscopic detection of microorganisms in smears prepared from clinical and non-clinical materials. Acridine orange staining has to be performed at an acidic pH to obtain the differential staining, which allows bacterial cells to stain orange and tissue components to stain yellow or green.[8]

Acridine orange is also used to stain acidic

bacterial DNA to fluoresce, aiding in the clinical diagnosis of bacterial infections, such as meningitis.[3]

References