Cartesian closed category

Source: Wikipedia, the free encyclopedia.

In

quantum and classical computation.[1]

Etymology

Named after

categorical product
.

Definition

The category C is called Cartesian closed[2] if and only if it satisfies the following three properties:

  • It has a
    terminal object
    .
  • Any two objects X and Y of C have a product X ×Y in C.
  • Any two objects Y and Z of C have an exponential ZY in C.

The first two conditions can be combined to the single requirement that any finite (possibly empty) family of objects of C admit a product in C, because of the natural

associativity of the categorical product and because the empty product
in a category is the terminal object of that category.

The third condition is equivalent to the requirement that the functor – ×Y (i.e. the functor from C to C that maps objects X to X ×Y and morphisms φ to φ × idY) has a right adjoint, usually denoted –Y, for all objects Y in C. For

hom-sets

which is natural in X, Y, and Z.[3]

Take care to note that a Cartesian closed category need not have finite limits; only finite products are guaranteed.

If a category has the property that all its slice categories are Cartesian closed, then it is called locally cartesian closed.[4] Note that if C is locally Cartesian closed, it need not actually be Cartesian closed; that happens if and only if C has a terminal object.

Basic constructions

Evaluation

For each object Y, the counit of the exponential adjunction is a natural transformation

called the (internal) evaluation map. More generally, we can construct the partial application map as the composite

In the particular case of the category Set, these reduce to the ordinary operations:

Composition

Evaluating the exponential in one argument at a morphism p : XY gives morphisms

corresponding to the operation of composition with p. Alternate notations for the operation pZ include p* and p∘-. Alternate notations for the operation Zp include p* and -∘p.

Evaluation maps can be chained as

the corresponding arrow under the exponential adjunction

is called the (internal) composition map.

In the particular case of the category Set, this is the ordinary composition operation:

Sections

For a morphism p:XY, suppose the following pullback square exists, which defines the subobject of XY corresponding to maps whose composite with p is the identity:

where the arrow on the right is pY and the arrow on the bottom corresponds to the identity on Y. Then ΓY(p) is called the object of sections of p. It is often abbreviated as ΓY(X).

If ΓY(p) exists for every morphism p with codomain Y, then it can be assembled into a functor ΓY : C/YC on the slice category, which is right adjoint to a variant of the product functor:

The exponential by Y can be expressed in terms of sections:

Examples

Examples of Cartesian closed categories include:

Examples of locally Cartesian closed categories include:

  • Every elementary topos is locally Cartesian closed. This example includes Set, FinSet, G-sets for a group G, as well as SetC for small categories C.
  • The category LH whose objects are topological spaces and whose morphisms are local homeomorphisms is locally Cartesian closed, since LH/X is equivalent to the category of sheaves . However, LH does not have a terminal object, and thus is not Cartesian closed.
  • If C has pullbacks and for every arrow p : XY, the functor p*  : C/YC/X given by taking pullbacks has a right adjoint, then C is locally Cartesian closed.
  • If C is locally Cartesian closed, then all of its slice categories C/X are also locally Cartesian closed.

Non-examples of locally Cartesian closed categories include:

  • Cat is not locally Cartesian closed.

Applications

In Cartesian closed categories, a "function of two variables" (a morphism f : X×YZ) can always be represented as a "function of one variable" (the morphism λf : XZY). In computer science applications, this is known as currying; it has led to the realization that simply-typed lambda calculus can be interpreted in any Cartesian closed category.

The

Curry–Howard–Lambek correspondence
provides a deep isomorphism between intuitionistic logic, simply-typed lambda calculus and Cartesian closed categories.

Certain Cartesian closed categories, the topoi, have been proposed as a general setting for mathematics, instead of traditional set theory.

Computer scientist

CAML
is more consciously modelled on Cartesian closed categories.

Dependent sum and product

Let C be a locally Cartesian closed category. Then C has all pullbacks, because the pullback of two arrows with codomain Z is given by the product in C/Z.

For every arrow p : XY, let P denote the corresponding object of C/Y. Taking pullbacks along p gives a functor p* : C/YC/X which has both a left and a right adjoint.

The left adjoint is called the dependent sum and is given by composition .

The right adjoint is called the dependent product.

The exponential by P in C/Y can be expressed in terms of the dependent product by the formula .

The reason for these names is because, when interpreting P as a dependent type , the functors and correspond to the type formations and respectively.

Equational theory

In every Cartesian closed category (using exponential notation), (XY)Z and (XZ)Y are

isomorphic
for all objects X, Y and Z. We write this as the "equation"

(xy)z = (xz)y.

One may ask what other such equations are valid in all Cartesian closed categories. It turns out that all of them follow logically from the following axioms:[8]

  • x×(y×z) = (x×yz
  • x×y = y×x
  • x×1 = x (here 1 denotes the terminal object of C)
  • 1x = 1
  • x1 = x
  • (x×y)z = xz×yz
  • (xy)z = x(y×z)

Bicartesian closed categories

initial object, with products distributing over coproducts. Their equational theory is extended with the following axioms, yielding something similar to Tarski's high school axioms
but with a zero:

  • x + y = y + x
  • (x + y) + z = x + (y + z)
  • x×(y + z) = x×y + x×z
  • x(y + z) = xy×xz
  • 0 + x = x
  • x×0 = 0
  • x0 = 1

Note however that the above list is not complete; type isomorphism in the free BCCC is not finitely axiomatizable, and its decidability is still an open problem.[9]

References

External links