Diisopropylbenzene

Source: Wikipedia, the free encyclopedia.

The diisopropylbenzenes (DIPB) are

isopropyl (CH(CH3)2) substituents.[1] DIPB has been referred to as "a common diluent" alongside hexane.[2]

Diisopropylbenzenes
Systematic name 1,2-Diisopropylbenzene 1,3-Diisopropylbenzene 1,4-Diisopropylbenzene
Common name o-Diisopropylbenzene m-Diisopropylbenzene p-Diisopropylbenzene
Chemical structure Structure of 1,2-diisopropylbenzene Structure of 1,3-diisopropylbenzene Structure of 1,4-diisopropylbenzene
CAS Number
577-55-9 99-62-7 100-18-5
PubChem CID 11345 from PubChem CID 7450 from PubChem CID 7486 from PubChem
Chemical formula C12H18
Molar mass 162.28 g/mol
State of matter Liquid
Melting point[3] −57 °C −63 °C −17 °C
Boiling point[3] 205 °C 203 °C 210 °C
Solubility Very slightly soluble in water[4] 0.072 mg·l−1 in water (25 °C)[5] Practically insoluble in water[6]

Production and reactions

Diisopropylbenzenes typically arise by

:

C6H6 + CH3CH=CH2 → C6H5CH(CH3)2
C6H5CH(CH3)2 + CH3CH=CH2 → C6H4(CH(CH3)2)2

These alkylations are catalyzed by various

aluminium trichloride
.

They can also be prepared and transformed by

C6H4(CH(CH3)2)2 + C6H6 → 2 C6H5CH(CH3)2

The 1,3- and 1,4- isomers are mainly of interest as precursors to the respective dihydroxylbenzene derivatives, which exploits the

Hock rearrangements. All three isomers form hydroperoxides, as is implicit in the Hock rearrangement, which are of interest as radical initiators for polymerization.[7]

See also

  • Propofol, which is 1,3-DIPB with a hydroxyl group at position 2 (taken as position 1 in the propofol molecule)

References

External links