El Tigre Fault

Source: Wikipedia, the free encyclopedia.
South America seismic hazard map with estimated El Tigre Fault location inset. Adapted from illustrations[1][2][3][4]

The El Tigre Fault is a 120 km long, roughly north-south trending,

subducting under the South American Plate.[6][7] It is a major fault with crustal significance.[5] The Andes Mountain belt trends with respect to the Nazca Plate/South American Plate convergence zone, and deformation is divided between the Precordilleran thrust faults and the El Tigre strike-slip motion.[5] The El Tigre Fault is currently seismically active.[5]

Right lateral strike-slip fault with observable displacement

Geology

El Tigre Fault is a

Geomorphic and 10Be (Beryllium) exposure ages have been used in some studies to estimate the Quaternary age and slip rate.[3] Slip rate is estimated to be approximately 1 mm/year[3] and offsets range from 60 to 180 m.[5]

The

Moment magnitude estimates reveal that a 7 ± 0.5 scale earthquake could be produced.[5]

Fault zones

Transtension and transpression of a right lateral fault. Combined data from illustrations and text.[2][7]

Northern

The northern subdivision is approximately 41–46 km long.[2][5] One estimation shows the segment begins where the fault bends to the northeast and is 41 km long.[2] Another estimation places the distinction 5.5 km south of this bend resulting in the northern segment 46 km long.[5] This section is more structurally complex than the central and southern sections, due to the segment's northern edge ending in a horse tail termination.[2] This faulted area can be interpreted from the 1 km to 5 km separation of several disperse rupture strands.[2]

Central

The central subdivision is approximately 48–53 km long.

right-lateral fault bends to the right causing the crust to compress (transpressive).[1][2] A bedrock scarp with an east-facing slope shows vertical displacement along this part of the fault.[1][2] The scarp has a slope of 18-24° and maximum height of 85 m.[2] Tectonic shortening appears to have changed direction from WSW-ENE to W-E during the Pleistocene, altering the kinematics to the present transpressive/transtensive system from a mainly transcurrent one.[1]

Southern

The southern subdivision is approximately 26 km long.

alluvial fans in this segment, some studies conclude a horizontal displacement rate of approximately 1 mm/yr.[2][3] The southern segment along with the central segment are crossed by several oblique and transverse faults almost perpendicular to the El Tigre Fault.[2] These faults are inferred due to the long linear strands of stream channels, as the faults are not visible on the surface.[1][2]

Discrepancies

The faults location in a seismically active zone and a low erosional environment makes it a good study area.

Palaeocene,[8][9] an Eocene strike-slip fault,[9][10] an Oligocene northwest-verging thrust fault,[8][11] and a south-east dipping normal fault inverted in the Neogene.[8][12] Research models in the 1980s describe the fault as system anywhere from 800 km up to 1000 km in length.[2][5] The kinematics, geometry, extension, and deformation have not been widely agreed upon,[2] therefore the new interest in the El Tigre Fault should lead to further studies using modern technology. These future studies should shed light on the discrepancies that have resulted from lack of in depth information in the past.[1][2]

References

  1. ^ a b c d e f g h i j k l m n o Fazzito, S.; Rapalini, A.; Cortes, J.; Terrizzano, C. (2011). "Kinematic study in the area of the Quaternary oblique-slip El Tigre fault, Western Precordillera, Argentina, on the basis of paleomagnetism and anisotropy of magnetic susceptibility". Latinmag Letters. 1 (B24): 1–5.
  2. ^
    S2CID 129365816
    .
  3. ^ .
  4. ^ "South America seismic hazard map". U.S. Geological Survey USGS. Archived from the original on October 10, 2012. Retrieved 9 November 2013.
  5. ^ a b c d e f g h i j k l m n o p Siame, L.; Sebrier, M.; Bellier, O.; Bourles, D.; Castano, J.C.; Aurojo, M.; Yiou, F.; Raisbeck, G. (September 1996). Segmentation and horizontal slip rate estimation of the El Tigre fault zone, San Juan Province (Argentina) from SPOT images analysis. Third ISAG. St. Malo (France).
  6. ^ a b c d e Costa, C.; et al. (2006). "An Overview of the Main Quaternary Deformation of South America". Revista de la Asociación Geológica Argentina. 61 (4).
  7. ^ a b Van Der Pluijm, B.; Marshak, S. (2004). Earth Structure. W. W. Norton and Company. p. 579.
  8. ^
    S2CID 128945405
    .
  9. ^ .
  10. ^ Pindell, J.L.; Higgs, R.; Dewey, J. (1998). "Cenozoic Palinspastic reconstruction, Paleogeographic evolution and hydrocarbon setting of the Northern Margin of South America". Society of Economic Paleontologists and Mineralogists (Society for Sedimentary Geology) (58): 45–84.
  11. .
  12. .