Elbrus (computer)

Source: Wikipedia, the free encyclopedia.
Elbrus logo
Moscow Center of SPARC Technologies designed a laptop for military and industrial use.
Personal computer.

The Elbrus (Russian: Эльбрус) is a line of Soviet and Russian computer systems developed by the Lebedev Institute of Precision Mechanics and Computer Engineering. These computers are used in the space program, nuclear weapons research, and defense systems, as well as for theoretical and researching purposes, such as an experimental Refal and CLU translators.

History

Large computer in a museum
Elbrus computer in Moscow's Polytechnic Museum

Historically, computers under the Elbrus brand comprised several different instruction set architectures (ISAs).

The first of them was the line of the

.

After that Burtsev retired, and new Lebedev's chief developer, Boris Babayan, introduced the completely new system architecture. Differing completely from the architecture of both Elbrus 1 and Elbrus 2, it employed a very long instruction word (VLIW) approach.

In 1992, a spin-off company

Moscow Center of SPARC Technologies
(MCST) was created and continued development, using the "Elbrus" moniker as a brand for all computer systems developed by the company.

In the late 1990s, a series of SPARC-based central processing units (CPUs) were developed at MCST as a way to raise funds for in-house semiconductor intellectual property core development and to fill the niche of domestically-developed CPUs for the backdoor-wary military.

Models

Elbrus 3-1
Elbrus 3-1, in 1994
DeveloperLebedev Institute of Precision Mechanics and Computer Engineering
Product familyElbrus
Release date1990; 34 years ago (1990)
Elbrus models
Elbrus-8SV
  • Elbrus 1 (1979) was the first in the line.
  • Elbrus 2 (1984)
  • Elbrus 3 (1990) was a 16-processor computer developed by the Babayan's team, and one of the first VLIW computers in the world.
  • Elbrus 2000 (2001) was a microprocessor development of the Elbrus 3 architecture. Also known as Elbrus-S.
  • Elbrus-2S+ (2011) working at 500 MHz, with capacity to calculate 16 GFlops.
  • Elbrus-2SM (2014) working at 300 MHz, with capacity to calculate 9.6 GFlops.
  • Elbrus-4S (2014) working at 800 MHz, with capacity to calculate 50 GFlops.[1]
  • Elbrus-1S+ (2016) system on a chip (SoC) with graphics processing unit (GPU), working at 600–1000 MHz, with capacity to calculate 24 GFlops.
  • Elbrus-8S (2014–2015) working at 1300 MHz, with capacity to calculate 250 GFlops.
  • Elbrus-8SV
    (2018) working at 1500 MHz, with capacity to calculate 576 GFlops.
  • Elbrus-16S (2019) working at 2000 MHz, with capacity to calculate 1.5 TFlops.

SPARC

  • Elbrus-90micro (1998–2010) is a computer line based on
    MCST-4R working at 80, 150, 500, and 1000 MHz. The Elbrus-90 is used to control the S-400 missile system.[2]

See also

References

  1. ^ "Russia's homegrown Elbrus processor and PC would be fantastic in 1999". PCWorld. 2015-05-12. Archived from the original on 2020-10-26. Retrieved 2020-06-02.
  2. ^ Sudakov, Dmitry (September 25, 2017). "Russia's S-400 air defence systems for NATO armies". Pravda Report. Archived from the original on October 27, 2018. Retrieved November 3, 2018. The S-400 works equally well in 360 degrees of activity area. Its phased array radar antenna with Elbrus-90 computer ensures the detection range of up to 600 kilometres.

External links