Energy amplifier

Source: Wikipedia, the free encyclopedia.

In

accelerator-driven sub-critical reactor
.

None have ever been built.

History

The concept is credited to Italian scientist

GeV, and a target with thorium as fuel and lead as a coolant. Rubbia's scheme also borrows from ideas developed by a group led by nuclear physicist Charles Bowman of the Los Alamos National Laboratory[2]

Principle and feasibility

The energy amplifier first uses a particle accelerator (e.g.

Moderated neutrons
produce U-233 fission, releasing energy.

This design is entirely plausible with currently available technology, but requires more study before it can be declared both practical and economical.

OMEGA project (option making of extra gain from actinides and fission products (オメガ計画)) is being studied as one of methodology of accelerator-driven system (ADS) in Japan.[6]

Richard Garwin and Georges Charpak describe the energy amplifier in detail in their book "Megawatts and Megatons: A Turning Point in the Nuclear Age?" (2001) on pages 153-163.

Earlier, the general concept of the energy amplifier, namely an

accelerator-driven sub-critical reactor, was covered in "The Second Nuclear Era" (1985) pages 62–64, by Alvin M. Weinberg
and others.

Advantages

The concept has several potential advantages over conventional nuclear

fission reactors
:

Disadvantages

  • Each reactor needs its own facility (particle accelerator) to generate the high energy proton beam, which is very costly. Apart from linear particle accelerators, which are very expensive, no proton accelerator of sufficient power and energy (> ~12 MW at 1 GeV) has ever been built. Currently, the Spallation Neutron Source utilizes a 1.44 MW proton beam to produce its neutrons, with upgrades envisioned to 5 MW.[8] Its 1.1 billion USD cost included research equipment not needed for a commercial reactor. Economies of scale might come into play if particle accelerators (which are currently only rarely built to the above mentioned strengths and then only for research purposes) become a more "mundane" technology. A similar effect can be observed when comparing the cost of the Manhattan Project up to the construction of Chicago Pile-1 to the costs of subsequent research or power reactors.
  • The fuel material needs to be chosen carefully to avoid unwanted nuclear reactions. This implies a full-scale nuclear reprocessing plant associated with the energy amplifier.[9]
  • If, for whatever reason, neutron flux exceeds design specifications enough for the assembly to reach criticality, a criticality accident or power excursion can occur. Unlike a "normal" reactor, the scram mechanism only calls for the "switching off" of the neutron source, which wouldn't help if more neutrons are constantly produced than consumed (i.e. Criticality), as there is no provision to rapidly increase neutron consumption e.g. via the introduction of a neutron poison.
  • Using lead as a coolant has similar disadvantages to those described in the article on
    lead cooled fast reactors
  • Many of the current spallation-based neutron sources used for research are "pulsed" i.e. they deliver very high neutron fluxes for very short durations of time. For a power reactor a smaller but more constant neutron flux is desired. The European Spallation Source will be the strongest neutron source in the world (measured by peak neutron flux) but will only be capable of very short (on the order of milliseconds) pulses.

See also

References

  1. ^ Rubbiatron, il reattore da Nobel, Massimo Cappon, CERN docs server: Panorama, 11 giugno 1998. Also: File pdf.
  2. PMID 17736803
    . Retrieved 6 March 2022.
  3. ^ "Spallation Target | Paul Scherrer Institut (PSI)". Psi.ch. Retrieved 2016-08-16.
  4. ^ http://www.tfd.chalmers.se/~valeri/Mars/Mo-o-f10.pdf [bare URL PDF]
  5. ^ "Neutron amplification in CANDU reactors" (PDF). CANDU. Archived from the original (PDF) on 2007-09-29.
  6. ^ 大電流電子線加速器の性能確認試験 [Performance of High Power CW Electron Linear Accelerator] (PDF) (in Japanese). Ōarai, Ibaraki: Japan Atomic Energy Agency. December 2000. Retrieved 2013-01-21.
  7. ^ "Ch 24 Page 166: Sustainable Energy - without the hot air | David MacKay". www.inference.org.uk.
  8. ^ http://accelconf.web.cern.ch/AccelConf/e04/PAPERS/TUPLT170.PDF Archived 2006-05-18 at the Wayback Machine [bare URL PDF]
  9. ^ Conceptual design of a fast neutron operated high power energy amplifier, Carlo Rubbia et al., CERN/AT/95-44, pages 42 ff., section Practical considerations

External links