Explosophore

Source: Wikipedia, the free encyclopedia.

Explosophores are functional groups in organic chemistry that give organic compounds explosive properties.

History

The term was first coined by Russian chemist V. Pletz in 1935[1] and originally mistranslated in some articles as plosophore[citation needed]. Also of note is an auxoexplose concept (similar to chromophore and auxochrome concept), which is a group that modifies the explosive capability of the molecule. The term explosophore has been used more frequently after its use in books such as Organic Chemistry of Explosives by J. Agrawal and R. Hodgson (2007)'.[citation needed]

Properties

Nitrogen-containing explosophores (groups I, II and III below) are particularly strong because in addition to providing oxygen they react to form molecular nitrogen, which is a very stable molecule, and thus the overall reaction is strongly exothermic. The gas formed also expands, causing the shock wave which is observed.

Classification

Pletz grouped the explosophores into eight distinct categories.[2][3]

I. −NO2, −ON=O, −ONO2
These represent:
Most commercially used explosives include the nitrate ion or the nitro group.


II. −N=N−, −N=N+=N
The
lead azide Pb(N3)2, ammonium azide
NH4N3)


III. −RnNXm
The halogenated nitrogen group X:halogen (e.g. nitrogen triiodide NI3 and nitrogen trichloride NCl3)


IV. −C=N−O−
The
mercury fulminate
Hg(ONC)2)


V. −OClO2, −OClO3
The chlorate and perchlorate groups respectively, connected to organics/inorganics (e.g. potassium chlorate KClO3, fluorine perchlorate FOClO3)


VI. −O−O−, −O3
The
organics/inorganics (e.g. acetone peroxide, butanone peroxide
)


VII. −C≡C M+
The
copper acetylide
Cu2C2)


VIII. A metal atom connected by an unstable bond to the carbon of certain organic radicals
This class contains for instance organic compounds of mercury, thallium, and lead.


Other
Other substances have been characterised as explosophores outside of the eight classes as defined by Pletz.

References

  1. ^ Pletz, V. J. Gen. Chem. (U.S.S.R.) 5, 173 (1935)
  2. ^ Handrick, G.R., Lothrop, W.C. Chem. Rev., 1949, 44 (3) p 419–445
  3. ^ Warey, Philip. B. ed. New Research on Hazardous Materials, Nova Science Publishers, 2007