Thallium
![]() | |||||||||||||||||||||||||||||||||
Thallium | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation | /ˈθæliəm/ | ||||||||||||||||||||||||||||||||
Appearance | silvery white | ||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Tl) | |||||||||||||||||||||||||||||||||
Thallium in the periodic table | |||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||
kJ/mol | |||||||||||||||||||||||||||||||||
Heat of vaporization | 165 kJ/mol | ||||||||||||||||||||||||||||||||
Molar heat capacity | 26.32 J/(mol·K) | ||||||||||||||||||||||||||||||||
Vapor pressure
| |||||||||||||||||||||||||||||||||
Atomic properties | |||||||||||||||||||||||||||||||||
Oxidation states | common: +1, +3 −5, Discovery William Crookes (1861) | | |||||||||||||||||||||||||||||||
First isolation | Claude-Auguste Lamy (1862) | ||||||||||||||||||||||||||||||||
Isotopes of thallium | |||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||
Thallium is a
Thallium tends to form the +3 and +1 oxidation states. The +3 state resembles that of the other elements in
Commercially, thallium is produced not from potassium ores, but as a byproduct from refining of heavy-metal sulfide ores. Approximately 65% of thallium production is used in the electronics industry and the remainder is used in the pharmaceutical industry and in glass manufacturing.[9] It is also used in infrared detectors. The radioisotope thallium-201 (as the soluble chloride TlCl) is used in small amounts as an agent in a nuclear medicine scan, during one type of nuclear cardiac stress test.
Soluble thallium salts (many of which are nearly tasteless) are highly
Characteristics
A thallium atom has 81 electrons, arranged in the electron configuration [Xe]4f145d106s26p1; of these, the three outermost electrons in the sixth shell are valence electrons. Due to the
A number of standard electrode potentials, depending on the reaction under study,[12] are reported for thallium, reflecting the greatly decreased stability of the +3 oxidation state:[11]
+0.73 | Tl3+ + 3 e− | ↔ Tl |
−0.336 | Tl+ + e− | ↔ Tl |
Thallium is the first element in group 13 where the reduction of the +3 oxidation state to the +1 oxidation state is spontaneous under standard conditions.[11] Since bond energies decrease down the group, with thallium, the energy released in forming two additional bonds and attaining the +3 state is not always enough to outweigh the energy needed to involve the 6s-electrons.[13] Accordingly, thallium(I) oxide and hydroxide are more basic and thallium(III) oxide and hydroxide are more acidic, showing that thallium conforms to the general rule of elements being more electropositive in their lower oxidation states.[13]
Thallium is malleable and sectile enough to be cut with a knife at room temperature. It has a metallic luster that, when exposed to air, quickly tarnishes to a bluish-gray tinge, resembling lead. It may be preserved by immersion in oil. A heavy layer of oxide builds up on thallium if left in air. In the presence of water, thallium hydroxide is formed. Sulfuric and nitric acids dissolve thallium rapidly to make the sulfate and nitrate salts, while hydrochloric acid forms an insoluble thallium(I) chloride layer.[14]
Isotopes
Thallium has 41
Compounds
Thallium(III)
Thallium(III) compounds resemble the corresponding aluminium(III) compounds. They are moderately strong oxidizing agents and are usually unstable, as illustrated by the positive reduction potential for the Tl3+/Tl couple. Some mixed-valence compounds are also known, such as Tl4O3 and TlCl2, which contain both thallium(I) and thallium(III). Thallium(III) oxide, Tl2O3, is a black solid which decomposes above 800 °C, forming the thallium(I) oxide and oxygen.[14]
The simplest possible thallium compound,
4 complex anion in aqueous solution. The trichloride and tribromide disproportionate just above room temperature to give the monohalides, and thallium triiodide contains the linear triiodide anion (I−
3) and is actually a thallium(I) compound.[19] Thallium(III) sesquichalcogenides do not exist.[20]
Thallium(I)
The
The double salt Tl
4(OH)
2CO
3 has been shown to have hydroxyl-centred triangles of thallium, [Tl
3(OH)]2+
, as a recurring motif throughout its solid structure.[23]
The metalorganic compound thallium ethoxide (TlOEt, TlOC2H5) is a heavy liquid (ρ 3.49 g·cm−3, m.p. −3 °C),[24] often used as a basic and soluble thallium source in organic and organometallic chemistry.[25]
Organothallium compounds
Organothallium compounds tend to be thermally unstable, in concordance with the trend of decreasing thermal stability down group 13. The chemical reactivity of the Tl–C bond is also the lowest in the group, especially for ionic compounds of the type R2TlX. Thallium forms the stable [Tl(CH3)2]+ ion in aqueous solution; like the isoelectronic Hg(CH3)2 and [Pb(CH3)2]2+, it is linear. Trimethylthallium and triethylthallium are, like the corresponding gallium and indium compounds, flammable liquids with low melting points. Like indium, thallium cyclopentadienyl compounds contain thallium(I), in contrast to gallium(III).[26]
History
Thallium (
After the publication of the improved method of flame spectroscopy by Robert Bunsen and Gustav Kirchhoff[31] and the discovery of caesium and rubidium in the years 1859 to 1860, flame spectroscopy became an approved method to determine the composition of minerals and chemical products. Crookes and Lamy both started to use the new method. Crookes used it to make spectroscopic determinations for tellurium on selenium compounds deposited in the lead chamber of a sulfuric acid production plant near Tilkerode in the Harz mountains. He had obtained the samples for his research on selenium cyanide from August Hofmann years earlier.[32][33] By 1862, Crookes was able to isolate small quantities of the new element and determine the properties of a few compounds.[34] Claude-Auguste Lamy used a spectrometer that was similar to Crookes' to determine the composition of a selenium-containing substance which was deposited during the production of sulfuric acid from pyrite. He also noticed the new green line in the spectra and concluded that a new element was present. Lamy had received this material from the sulfuric acid plant of his friend Frédéric Kuhlmann and this by-product was available in large quantities. Lamy started to isolate the new element from that source.[35] The fact that Lamy was able to work ample quantities of thallium enabled him to determine the properties of several compounds and in addition he prepared a small ingot of metallic thallium which he prepared by remelting thallium he had obtained by electrolysis of thallium salts.[citation needed]
As both scientists discovered thallium independently and a large part of the work, especially the isolation of the metallic thallium was done by Lamy, Crookes tried to secure his own priority on the work. Lamy was awarded a medal at the International Exhibition in London 1862: For the discovery of a new and abundant source of thallium and after heavy protest Crookes also received a medal: thallium, for the discovery of the new element. The controversy between both scientists continued through 1862 and 1863. Most of the discussion ended after Crookes was elected Fellow of the Royal Society in June 1863.[36][37]
The dominant use of thallium was the use as poison for rodents. After several accidents the use as poison was banned in the United States by
Occurrence and production
Thallium concentration in the Earth's crust is estimated to be 0.7 mg/kg,[39] mostly in association with potassium-based minerals in clays, soils, and granites. The major source of thallium for practical purposes is the trace amount that is found in copper, lead, zinc, and other heavy-metal-sulfide ores.[40][41]

Thallium is found in the minerals
Thallium can also be obtained from the
The United States Geological Survey (USGS) estimates that the annual worldwide production of thallium is 10 metric tonnes as a by-product from the smelting of copper, zinc, and lead ores.[39] Thallium is either extracted from the dusts from the smelter flues or from residues such as slag that are collected at the end of the smelting process.[39] The raw materials used for thallium production contain large amounts of other materials and therefore a purification is the first step. The thallium is leached either by the use of an alkali or sulfuric acid from the material. The thallium is precipitated several times from the solution to remove impurities. At the end it is converted to thallium sulfate and the thallium is extracted by electrolysis on platinum or stainless steel plates.[43] The production of thallium decreased by about 33% in the period from 1995 to 2009 – from about 15 metric tonnes to about 10 tonnes. Since there are several small deposits or ores with relatively high thallium content, it would be possible to increase the production if a new application, such as a thallium-containing high-temperature superconductor, becomes practical for widespread use outside of the laboratory.[46]
Applications
Historic uses
The odorless and tasteless
Optics
Electronics

Thallium(I) sulfide's
High-temperature superconductivity
Research activity with thallium is ongoing to develop
Nuclear medicine
Before the widespread application of
Thallium stress test
A thallium stress test is a form of
Other uses
A mercury–thallium alloy, which forms a
A saturated solution of equal parts of thallium(I)
Thallium iodide is frequently used as an additive in metal-halide lamps, often together with one or two halides of other metals. It allows optimization of the lamp temperature and color rendering,[65][66] and shifts the spectral output to the green region, which is useful for underwater lighting.[67]
Toxicity
Hazards | |
---|---|
GHS labelling: | |
![]() ![]() ![]() | |
Danger | |
H300, H330, H373, H413 | |
P260, P264, P284, P301, P310[68] | |
NFPA 704 (fire diamond) |
Thallium and its compounds are extremely toxic, with numerous recorded cases of fatal thallium poisoning.
Contact with skin is dangerous, and adequate ventilation is necessary when melting this metal. Thallium(I) compounds have a high aqueous solubility and are readily absorbed through the skin, and care should be taken to avoid this route of exposure, as
One of the main methods of removing thallium, both radioactive and stable, from humans is to use Prussian blue, a material which absorbs thallium.[75] Up to 20 grams per day of Prussian blue is fed by mouth to the patient, and it passes through the patient’s digestive system and comes out in the patient’s stool. Hemodialysis and hemoperfusion are also used to remove thallium from the blood serum. At later stages of the treatment, additional potassium is used to mobilize thallium from the tissues.[76][77]
According to the United States Environmental Protection Agency (EPA), artificially-made sources of thallium pollution include gaseous emission of cement factories, coal-burning power plants, and metal sewers. The main source of elevated thallium concentrations in water is the leaching of thallium from ore processing operations.[41][78]
See also
Citations
- ^ "Standard Atomic Weights: Thallium". CIAAW. 2009.
- ISSN 1365-3075.
- ^ ISBN 978-1-62708-155-9.
- PMID 11666505.
- ISBN 0-8493-0486-5.
- ISBN 0-8493-0464-4.
- .
- ^ The Mining and Smelting Magazine Archived 2021-02-24 at the Wayback Machine. Ed. Henry Curwen Salmon. Vol. iv, July–Dec 1963, p. 87.
- ^ a b c d e "Chemical fact sheet – Thallium". Spectrum Laboratories. April 2001. Archived from the original on 2008-02-21. Retrieved 2008-02-02.
- ISBN 978-1-4358-5333-1.
- ^ a b c Greenwood and Earnshaw, pp. 222–224
- ISBN 1-4398-5511-0.
- ^ a b Greenwood and Earnshaw, pp. 224–7
- ^ ISBN 978-3-11-007511-3.
- ^
- ^ "Manual for reactor produced radioisotopes" (PDF). International Atomic Energy Agency. 2003. Archived (PDF) from the original on 2011-05-21. Retrieved 2010-05-13.
- ISBN 978-0-7817-2007-6. Archivedfrom the original on 2017-02-22. Retrieved 2016-09-26.
- .
- ^ Greenwood and Earnshaw, p. 239
- ^ Greenwood and Earnshaw, p. 254
- ^ Greenwood and Earnshaw, p. 241
- ^ Greenwood and Earnshaw, pp. 246–247
- S2CID 97334707.
- )
- PMID 10990429.
- ^ Greenwood and Earnshaw, pp. 262–264
- ^ Liddell, Henry George and Scott, Robert (eds.) "θαλλος Archived 2016-04-15 at the Wayback Machine", in A Greek–English Lexicon, Oxford University Press.
- from the original on 2014-07-01. Retrieved 2016-09-26.
- Crookes, William (May 18, 1861) "Further remarks on the supposed new metalloid," Chemical News, vol. 3, p. 303.
- Crookes, William (June 19, 1862) "Preliminary researches on thallium," Proceedings of the Royal Society of London, vol. 12, pp. 150–159.
- Lamy, A. (May 16, 1862) "De l'existencè d'un nouveau métal, le thallium," Comptes Rendus, vol. 54, pp. 1255–1262. Archived 2016-05-15 at the Portuguese Web Archive.
- .
- ^ "Thallium – Element information, properties and uses | Periodic Table". Royal Society of Chemistry. Retrieved 2 February 2024.
- (PDF) from the original on 2020-11-14. Retrieved 2018-04-20.
- JSTOR 112218.
- from the original on 2020-03-13. Retrieved 2019-09-12.
- S2CID 146534210.
- ^ Lamy, Claude-Auguste (1862). "De l'existencè d'un nouveau métal, le thallium". Comptes Rendus. 54: 1255–1262. Archived from the original on 2016-05-15. Retrieved 2008-11-11.
- JSTOR 531576.
- ^ ISBN 978-0-19-280600-0. Archivedfrom the original on 2020-03-07. Retrieved 2016-09-26.
- ^ a b Staff of the Nonferrous Metals Division (1972). "Thallium". Minerals yearbook metals, minerals, and fuels. Vol. 1. United States Geological Survey. p. 1358. Archived from the original on 2014-03-22. Retrieved 2010-06-01.
- ^ a b c d Guberman, David E. "Mineral Commodity Summaries 2010: Thallium" (PDF). United States Geological Survey. Archived (PDF) from the original on 2010-07-15. Retrieved 2010-05-13.
- S2CID 40955658.
- ^ PMID 15788190.
- .
- ^ ISBN 978-0-7514-0103-5. Archivedfrom the original on 2017-02-22. Retrieved 2016-09-26.
- .
- .
- ^ Smith, Gerald R. "Mineral commodity summaries 1996: Thallium" (PDF). United States Geological Survey. Archived (PDF) from the original on 2010-05-29. Retrieved 2010-05-13.
- ^ ISBN 978-0-8493-0485-9.
- PMID 20774304.
- PMID 9801025.
- .
- ISBN 978-0-8493-3785-7. Archivedfrom the original on 2020-03-11. Retrieved 2016-09-26.
- PMID 20174271.
- .
- S2CID 30690410.
- from the original on 2020-03-16. Retrieved 2019-07-01.
- ISBN 978-1-58829-370-1. Archivedfrom the original on 2017-02-19. Retrieved 2016-09-26.
- from the original on 2007-10-12. Retrieved 2006-11-23.
- ^ Thallium-201 production Archived 2006-09-13 at the Wayback Machine from Harvard Medical School's Joint Program in Nuclear Medicine.
- from the original on 2008-10-11. Retrieved 2010-05-13.
- ISBN 978-1-4051-0386-2. Archivedfrom the original on 2020-03-12. Retrieved 2016-09-26.
- .
- ISBN 978-0-471-59446-8. Archivedfrom the original on 2014-07-01. Retrieved 2016-09-26.
- ^ Jahns, R. H. (1939). "Clerici solution for the specific gravity determination of small mineral grains" (PDF). American Mineralogist. 24: 116. Archived (PDF) from the original on 2012-07-24. Retrieved 2009-11-06.
- ISBN 978-0-7506-4411-2. Archivedfrom the original on 2020-03-17. Retrieved 2016-09-26.
- .
- PMID 20062260.
- ^ Wilford, John Noble (1987-08-11). "UNDERSEA QUEST FOR GIANT SQUIDS AND RARE SHARKS". The New York Times. Archived from the original on 2016-12-20. Retrieved 2017-02-13.
- ^ "Thallium 277932". Sigma-Aldrich. Archived from the original on 2018-10-02. Retrieved 2018-10-02.
- ^ "A 15-year-old case yields a timely clue in deadly thallium poisoning". nj. 2011-02-13. Retrieved 2023-02-12.
- ^ Jennifer Ouellette (25 December 2018). "Study brings us one step closer to solving 1994 thallium poisoning case". Ars Technica. Archived from the original on 26 December 2018. Retrieved 26 December 2018.
- ^ "CDC – NIOSH Pocket Guide to Chemical Hazards – Thallium (soluble compounds, as Tl)". www.cdc.gov. Archived from the original on 2015-09-24. Retrieved 2015-11-24.
- ^ "Surface Contamination – Overview | Occupational Safety and Health Administration". www.osha.gov. Retrieved 2023-02-12.
- ^ Chemical Sampling Information | Thallium, soluble compounds (as Tl) Archived 2014-03-22 at the Wayback Machine. Osha.gov. Retrieved on 2013-09-05.
- ^ "CDC – The Emergency Response Safety and Health Database: Systemic Agent: THALLIUM – NIOSH". www.cdc.gov. Archived from the original on 2019-11-15. Retrieved 2019-12-11.
- from the original on 2020-03-15. Retrieved 2019-07-01.
- ^ Prussian blue fact sheet Archived 2013-10-20 at the Wayback Machine. US Centers for Disease Control and Prevention.
- PMID 9022660.
- US Environmental Protection Agency. 2014. Retrieved 2025-02-28.
General bibliography
- ISBN 978-0-08-037941-8.
External links
- Thallium at The Periodic Table of Videos(University of Nottingham)
- Toxicity, thallium
- NLM hazardous substances databank – Thallium, elemental
- ATSDR – ToxFAQs
- CDC – NIOSH Pocket Guide to Chemical Hazards