Fibonacci word fractal

Source: Wikipedia, the free encyclopedia.

The Fibonacci word fractal is a fractal curve defined on the plane from the Fibonacci word.

Definition

The first iterations
L-system representation[1]

This curve is built iteratively by applying the Odd–Even Drawing rule to the Fibonacci word 0100101001001...:

For each digit at position k:

  1. Draw a segment forward
  2. If the digit is 0:
    • Turn 90° to the left if k is even
    • Turn 90° to the right if k is odd

To a Fibonacci word of length (the nth

Fibonacci number
) is associated a curve made of segments. The curve displays three different aspects whether n is in the form 3k, 3k + 1, or 3k + 2.

Properties

The Fibonacci numbers in the Fibonacci word fractal.

Some of the Fibonacci word fractal's properties include:[2][3]

  • The curve contains segments, right angles and flat angles.
  • The curve never self-intersects and does not contain double points. At the limit, it contains an infinity of points asymptotically close.
  • The curve presents self-similarities at all scales. The reduction ratio is . This number, also called the silver ratio, is present in a great number of properties listed below.
  • The number of self-similarities at level n is a
    Fibonacci number
    \ −1. (more precisely: ).
  • The curve encloses an infinity of square structures of decreasing sizes in a ratio (see figure). The number of those square structures is a Fibonacci number.
  • The curve can also be constructed in different ways (see gallery below):
    • Iterated function system of 4 and 1 homothety of ratio and
    • By joining together the curves and
    • Lindenmayer system
    • By an iterated construction of 8 square patterns around each square pattern.
    • By an iterated construction of octagons
  • The Hausdorff dimension of the Fibonacci word fractal is , with the golden ratio.
  • Generalizing to an angle between 0 and , its Hausdorff dimension is , with .
  • The Hausdorff dimension of its frontier is .
  • Exchanging the roles of "0" and "1" in the Fibonacci word, or in the drawing rule yields a similar curve, but oriented 45°.
  • From the Fibonacci word, one can define the «dense Fibonacci word», on an alphabet of 3 letters: 102210221102110211022102211021102110221022102211021... (sequence A143667 in the OEIS). The usage, on this word, of a more simple drawing rule, defines an infinite set of variants of the curve, among which:
    • a "diagonal variant"
    • a "svastika variant"
    • a "compact variant"
  • It is conjectured that the Fibonacci word fractal appears for every sturmian word for which the slope, written in continued fraction expansion, ends with an infinite sequence of "1"s.

Gallery

  • Curve after '"`UNIQ--postMath-00000017-QINU`"' iterations.
    Curve after iterations.
  • Self-similarities at different scales.
    Self-similarities at different scales.
  • Dimensions.
    Dimensions.
  • Construction by juxtaposition (1)
    Construction by juxtaposition (1)
  • Construction by juxtaposition (2)
    Construction by juxtaposition (2)
  • Order 18, with some sub-rectangles colored.
    Order 18, with some sub-rectangles colored.
  • Construction by iterated suppression of square patterns.
    Construction by iterated suppression of square patterns.
  • Construction by iterated octagons.
    Construction by iterated octagons.
  • Construction by iterated collection of 8 square patterns around each square pattern.
    Construction by iterated collection of 8 square patterns around each square pattern.
  • With a 60° angle.
    With a 60° angle.
  • Inversion of "0" and "1".
    Inversion of "0" and "1".
  • Variants generated from the dense Fibonacci word.
    Variants generated from the dense Fibonacci word.
  • The "compact variant"
    The "compact variant"
  • The "svastika variant"
    The "svastika variant"
  • The "diagonal variant"
    The "diagonal variant"
  • The "π/8 variant"
    The "π/8 variant"
  • Artist creation (Samuel Monnier).
    Artist creation (Samuel Monnier).

The Fibonacci tile

Imperfect tiling by the Fibonacci tile. The area of the central square tends to infinity.

The juxtaposition of four curves allows the construction of a closed curve enclosing a surface whose area is not null. This curve is called a "Fibonacci tile".

  • The Fibonacci tile almost tiles the plane. The juxtaposition of 4 tiles (see illustration) leaves at the center a free square whose area tends to zero as k tends to infinity. At the limit, the infinite Fibonacci tile tiles the plane.
  • If the tile is enclosed in a square of side 1, then its area tends to .
Perfect tiling by the Fibonacci snowflake

Fibonacci snowflake

Fibonacci snowflakes for i = 2 for n = 1 through 4: , , , [4]

The Fibonacci snowflake is a Fibonacci tile defined by:[5]

  • if
  • otherwise.

with and , "turn left" and "turn right", and .

Several remarkable properties:[5][6]

  • It is the Fibonacci tile associated to the "diagonal variant" previously defined.
  • It tiles the plane at any order.
  • It tiles the plane by translation in two different ways.
  • its perimeter at order n equals , where is the nth
    Fibonacci number
    .
  • its area at order n follows the successive indexes of odd row of the Pell sequence (defined by ).

See also

References

  1. ^ Ramírez, José L.; Rubiano, Gustavo N. (2014). "Properties and Generalizations of the Fibonacci Word Fractal", The Mathematical Journal, Vol. 16.
  2. ^ Monnerot-Dumaine, Alexis (February 2009). "The Fibonacci word fractal", independent (hal.archives-ouvertes.fr).
  3. ].
  4. ^ Ramírez, Rubiano, and De Castro (2014). "A generalization of the Fibonacci word fractal and the Fibonacci snowflake", Theoretical Computer Science, Vol. 528, p.40-56. [1]
  5. ^ .
  6. ^ A. Blondin-Massé, S. Labbé, S. Brlek, M. Mendès-France (2011). "Fibonacci snowflakes".

External links